scholarly journals Design Analysis and Performance of Greenhouse Based Solar Dryer

Author(s):  
Dalvi Piyush Hemant ◽  
Yeolekar Gaurav Laxman ◽  
Jadhav Akash Sampat ◽  
Prof. H. B. Wagh

Solar Drying or solar dehydration is one of the important processes required for preservation of food and agriculture products. Bacterial growth and moisture is being removed in this process. It helps for preserving the food products for more long time. Solar drying is the oldest & effective method used for drying food products. The device used for preservation of food products using solar energy is called as solar dryer or solar dehydrator. The solar dryer is classified on the basis of mode of drying, circulation of air, type and arrangement of solar air collector. In this project, a solar powered indirect type food dryer is designed and developed. The dryer design is consisting of solar collector unit along with absorber made up of extended surface of aluminum sheet with staging, drying chamber with three columns of each rack shelves, chimney for exhaust air, a solar powered fan. The dryer collector and drying chamber are connected with a hose pipe clamped to both ends. The project model of solar dryer is consisting of a monitoring unit for data logging of continuous updatation of parameters like temperature inside the dryer and temperature at ambient condition, humidity at inside and outside of dryer also the atmospheric pressure, etc. At the end we are going to investigate the effectiveness of solar dryer with above parameters.

Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 350 ◽  
Author(s):  
Wengang Hao ◽  
Shuonan Liu ◽  
Baoqi Mi ◽  
Yanhua Lai

A new hybrid solar dryer was designed and constructed in this study, which consisted of a flat-plate solar collector with dual-function (DF-FPSC), drying chamber with glass, fan etc. The DF-FPSC was firstly applied in drying agricultural products. The innovative application of hybrid solar dryer can control the drying chamber air temperature within a suitable range by different operation strategies. Drying experiments for lemon slices in the hybrid solar dryer were conducted by comparing open sun drying (OSD). Eight mathematical models of drying characteristics were employed to select the most suitable model for describing the drying curves of lemon slices. Furthermore, energy, exergy economic and environment (4E) analysis were also adopted to analyze the drying process of lemon slices. The results show that under the same experimental condition, the drying capability of the hybrid solar dryer was stronger than that of OSD. Meanwhile, it was found that the Two term and Wang and Singh models were the most suitable for fitting the lemon slices’ drying characteristics inside the hybrid solar dryer. The drying chamber air temperature can be controlled under about 60 °C during the process of lemon slices’ drying. The experimental results show the feasibility and validity of the proposed hybrid solar dryer.


2021 ◽  
Vol 406 ◽  
pp. 192-199
Author(s):  
Abdeldjalil Laouini ◽  
Boubaker Benhaou ◽  
Kamel Aoues ◽  
Abdelmalek Atia

Many studies have been conducted in the field of drying technology. The traditional dryingmethods are considered less effective and time consuming. The present study aims to develop the indirect solar dryer for agro-food products from El-Oued region (South-East of Algeria). The dryer is assisted by a parabolic dish concentrator to improve its performances through increasing its temperature and decreasing drying time. the realized solar dryer was tested on the red chilies during April 2018, the temperature in the drying chamber is reached intoxicating 55 °C with a drying time of 5 h.


2018 ◽  
Vol 26 (04) ◽  
pp. 1850032
Author(s):  
Hatem Oueslati ◽  
Salah Ben Mabrouk ◽  
Abdelkader Mami

This work aims to establish a mathematical model for studying, describing and evaluating the thermal performance of a solar drying device. Therefore, in order to be able to test the theory by numerical simulation, it is necessary to have a model of the device and values of the realistic parameters. A model based on bond graphs methodology is developed to represent the critical energetic relations; thermal analysis of the solar dryer was investigated based on thermal balance equations to predict its performance and the mass transfer phenomena are mostly analyzed through the study of the drying kinetics. Comparison of the results with experimental data suggests the model is reasonable for sizing such a solar dryer.


2020 ◽  
Vol 9 (1) ◽  
pp. 131-139
Author(s):  
Suherman Suherman ◽  
Hasri Widuri ◽  
Shelyn Patricia ◽  
Evan Eduard Susanto ◽  
Raafi Jaya Sutrisna

In this study, hybrid solar drying of coffee beans was performed, and energy analysis was carried out, to assess the system’s performance, in terms of energy efficiency, compared to solar drying and the open sun drying method. The dryer has three compartments: solar collector for collecting solar radiation, drying chamber, and a Liquid Petroleum Gas burner, which acted as an auxiliary heater to assist the thermal energy. The drying chamber has four trays for placing the dried product. The initial moisture content of coffee beans was 54.23% w.b and was reduced to the final moisture content between 11-12% w.b. The coffee beans dried faster when subjected to the solar hybrid drying method, compared to other methods, with the dryer temperature of 40°C, 50°C, and 60°C. Results indicated that the coffee beans’ drying times varied from 10 to 14 hours. However, at temperature 50°C and 60°C for the 1st tray, the water content was reduced more rapidly compared to the other tray. From the results of this study, we can see the different efficiency of solar collector that shows of 54.15% at variable temperature 60°C for drying time 12:00 to 14:00 p.m for hybrid solar drying and for the solar drying process is 50.07% at the range of drying time 12:00 to 14:00 p.m. Mathematical modelling shows that Page model is the most suitable for describing the coffee beans’ drying behaviour using a hybrid solar dryer. The effective diffusivity values found in this experiment are all in the acceptable range for most agricultural products. ©2020. CBIORE-IJRED. All rights reserved


2016 ◽  
Vol 3 (4) ◽  
pp. 1-5
Author(s):  
A. Abdul kani ◽  
A Fakrudeen ◽  
S. Magesh kumar ◽  
B Vineeth

2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Dare Aderibigbe Adetan ◽  
Kolawole Adesola Oladejo ◽  
Surajudeen Obayopo

In many parts of the world there is a growing awareness that renewable energy has an important role to play in extending technology to the farmers in developing countries to increase their productivity. Solar thermal technology is rapidly gaining acceptance as an energy saving technology in agriculture application. This article presents the design, construction and performance evaluation of a solar dryer for food preservation. In the dryer, heated air from a separate solar collector is passed through beds of grains. The design of the dryer makes provision for the attachment of additional mirrors on two opposite sides of the solar collection chamber. Overall, the dryer is of simple design, cost effective, and made from affordable available materials and require little or no skills for its fabrication and operation. The results obtained fromtests carried out on the dryer revealed that the temperatures inside the drying chamber and the solar collector were highest when the side mirrors were at 45o to the vertical, giving optimum performance under various experimental conditions.


Drying is the process of removing moisture contents from solid. Solar drying refers to a technique that utilizes incident solar radiation to convert it into thermal energy required for drying purposes. This project presents the design, construction and performance of an indirect type solar dryer for coffee product. In the dryer the air inters into the solar collector from the atmosphere through air inlet hole. This air will be heated in the collector and then pass to the drying chamber through the hole. Then the air exhausts through the outlet hole at the top of the drying chamber. The system designed can handle a capacity of up to 50kg of wet coffee per m2 at a depth of 100 mm. The average sunshine at Bale Robe was found to be 12 hours per day. The daily solar insolation at the site was found to be 5.86kW/m2 of surface per day. By utilizing the solar collector in question and assuming a collector efficiency of 20 %, the total solar energy received is 5.86 kW-hrs/m2 /day or 46.88 kW-hours per day (assuming the sunshine hours per day to be 8 hours). This solar dryer has a collector efficiency of 39.1%, a pick-up efficiency of 49.3%, and a system efficiency of 32.2%. the collector area of the system is calculated to be 1.11m2 and the total length of 1000mm by 300mm. The drying chamber is essentially a cabinetry dryer and measures 1020mm × 800mm × 30mm. It accommodates a drying bin which acts as the holding compartment for the wet coffee to be dried. The base of the drying chamber is made of a block of wood material 50mm deep, since wood is a good thermal insulator. The wood must be well seasoned and pre-treated to ensure it is protected from the humid environment. The air outlet is fitted at the top of the drying chamber which serves as the exit for the moisture ridden air. It is important since it ensures that moisture does not condense at the top of the drying chamber and speeds up the rate of drying through creating the suction effect. The drying bin measures 800mm × 800mm × 20mm.


Author(s):  
Barki. E ◽  
Ukwenya J ◽  
Idoko F

Solar dryer with backup incinerator was fabricated with the aim of improving the efficiency of the drying rate of selected agricultural products. The dryer consist of three main parts, the collector, the drying chamber and the incinerator. 1000g of chill pepper was sun dried and 1000g was charged into the dryer for the experiment. Drying using solar drying process was carried out during clear weather while incinerator drying process was carried out during cloudy weather and at nights The collector, dryer and incinerator energy efficiencies were determined and reported elsewhere. Exergy analysis of the dryer was carried out for both solar drying and incinerator drying using the experimental values. The average exergy inflow and outflow during solar drying was found to be 266.97 KJ/Kg and 20.85 KJ/Kg respectively. The average exergy loss at airflow velocity of 2.7 m/s was found to be 269.3 KJ/Kg for incinerator drying. The exergy efficiency of the incinerator fluctuates as it starts from 7.9, 11.1, 5.2, 13.5, 8.0 and 3.6 % for 8.00, 10.00, 12.00, 14.00, 16.00, 18.00 hrs respectively. The result also shows exergy efficiency of 83.1, 85.9, 91.7, 92.4, 89.0 and 73.4 % for 8.00, 10.00, 12.00, 14.00, 16.00, 18.00 hrs respectively during solar drying. The experimental and analytical temperatures values were observed to be solar radiation intensity dependants and are directly proportional with it. Although the heat losses are high for both drying processes, the dryer is suitable for drying agricultural produce during clear, cloudy weather and at nights.


Author(s):  
O. Taiwo Aduewa ◽  
S. Ajiboye Oyerinde ◽  
P. Ayoola Olalusi

The world is facing two major challenges: one is to meet the exponential growing demand for energy particularly in developing and underdeveloped countries and other is to deal with global, regional and local environmental impacts resulting from supply and use of conventional energy. The cost-effective technology for solar drying that can be easily adopted among the rural farmers of developing countries needs to be developed in areas where solar energy is abundantly available. As cheap as the solar energy could be, there are associated problems with the stability of the energy for different purposes due to instability of climatic conditions. For this research, a solar powered hot-air supplemented dryer (SPHSD) with a capacity of 20 kg of sliced yam was designed and developed. The SPHSD has three sections which are solar collector chamber, drying chamber and hot-air supplement chamber which is powered with two 150-watt solar panel and a 200 amps solar battery for continuous operation during bad weather. All data were logged digitally for accuracy and test was done using yam slices. Difference in drying time and stability in drying temperature was evaluated using SPHSD and indirect solar dryer. The result shows stability of temperature in the drying chamber when SPHSD was used while the drying temperature fluctuates throughout the indirect solar drying test period. Drying experiment was conducted for 481 minutes (between 0910 hrs to 1713 hrs) reducing the moisture content from 71.91%, 72.1% and 72.8% to 27.95%, 25.78% and 28.23% for MC1, MC2 and MC3in wet basis respectively. Drying experiment was conducted for 832 minutes (between 0901 hrs to 2257 hrs) reducing the moisture content from initial moisture content levels of 72.66%, 71.48% and 71.48% to 13.47%, 12.53% and 12.54% for MC1, MC2 and MC3in wet basis respectively.


Sign in / Sign up

Export Citation Format

Share Document