scholarly journals Generation of Electricity from Waste Heat

Author(s):  
Deepa S ◽  
Mohammad Rizan ◽  
Amaldev M Lal ◽  
Tritin Thomas ◽  
Fathima Hussain

Thermo electric generation converts heat energy into electrical energy . Power generated from TEG depends on the temperature difference between hot and cold surface . To improve the efficiency of TEG, MPPT algorithm with boost converter is used . Maximum power is obtained in the system when the output resistance of the system matches with the input resistance of TEG. By modelling the power variations generated from TEG system in series and parallel were minimized . The proposed system consists of TEG with boost converter having P& O MPPT . This paper presents simulation model of TEG module using MATLAB and is successful in generating a stable output.

2015 ◽  
Vol 787 ◽  
pp. 782-786 ◽  
Author(s):  
R. Prakash ◽  
D. Christopher ◽  
K. Kumarrathinam

The prime objective of this paper is to present the details of a thermoelectric waste heat energy recovery system for automobiles, more specifically, the surface heat available in the silencer. The key is to directly convert the surface heat energy from automotive waste heat to electrical energy using a thermoelectric generator, which is then regulated by a DC–DC Cuk converter to charge a battery using maximum power point tracking. Hence, the electrical power stored in the battery can be maximized. Also the other face of the TEG will remain cold. Hence the skin burn out accidents can be avoided. The experimental results demonstrate that the proposed system can work well under different working conditions, and is promising for automotive industry.


2017 ◽  
Author(s):  
◽  
Shaveen Maharaj

Industrial plants are excellent sources of waste heat and provide many opportunities for energy harvesting using thermo-electric principles. A thermoelectric generator (TEG) is utilized in this study for harvesting expended heat from various sources. The main challenge associated with this type of technology lies in the creation of a sufficient thermal gradient between the hot side and the cold side of the TEG device. This is necessary for the module to generate an appreciable quantity of electrical energy. The performance of the TEG generator is tested using different configurations, different heat sources and different cooling methods. Heat sources included electrically driven devices, gas, biomass and gel fuel. Expended heat from different sites within an industrial environment was also chosen for operating the TEG device. The power produced by the generator is sufficient to operate low power LED lights, a DC radio receiver and a cellular phone charger.


The growing concern on energy conservation and reduction of carbon footprint has led to a lot of inventions and innovations in terms of energy-efficient technologies in all the energy consuming applications. The automobile sector is a crucial zone where these technologies have a major role to play due to the sheer abundance of the number of automobiles.Many small refinements, alterations and innovations are happening in this field which has led to furthermore energy economic automobiles than before.But even in an advanced internal combustion engine, about two-thirds of fuel consumed by an automobile is discharged into the surroundings as waste heat. The effect of this is the increase in the surrounding air temperature which in turn contributes significantly to global warming. This paper proposes amethod to reduce the emission of heat from automobiles by designing and implementinga waste heat recovery system for internal combustion (IC) engines. The key aim is to reduce the amount of heat released into the environment and to convert it into useful energy. A thermoelectric generator (TEG) assembly is used to directly convert the wasted heat energy from the automobile into electrical energy. This electrical energy is conditioned using a Cukconverter and maximum power point tracking (MPPT) algorithm is embedded in the converter for impedance matching and maximum power transfer from TEG to the converter. The conditioned output is used to charge the battery of the vehicle. This methodologyalso increases the energy efficiency of the vehicle as a higher capacity battery can be employed.The proposed system can work well under varying temperature conditions to give a constant output. It can be implemented in any mechanical/ electrical systems were there is wastage of heat energy like gas pipelines, wearable electronics, space probes, cookstoves, boilers, thermal vision, etc. One of the thrust areas where this technology can be effectively utilized in today’s world is in electric vehicles where the energy efficiency is the most important factor.


2019 ◽  
Vol 2 (3) ◽  
pp. 525-531
Author(s):  
Mahmut Hekim ◽  
Engin Cetin

Geothermal power plants are the plants that provide the conversion of thermal energy in geothermal fluid to electrical energy as a result of the extraction of underground hot water resources to the earth by drilling. The total installed power of geothermal power plants in the field of geothermal resources in Turkey has reached 1,336 MW. The geothermal fluid, which is used for electric power generation in geothermal power plants, is re-injected into the underground wells after electrical energy production. For efficient generation of electrical energy in geothermal power plants, it is aimed to reuse the waste heat energy within the geothermal fluid before it is sent to the re-injection well. To achieve this aim, thermoelectric generator modules which convert waste heat energy to electrical energy can be used. In this study, a thermoelectric generator-based geothermal power plant simulator that converts geothermal fluid waste heat into electrical energy is installed and commissioned in the laboratory conditions.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Adlan Bagus Pradana ◽  
Fajar Irawan ◽  
Andreas Wisnu ◽  
Burhan Dwi Saputra ◽  
Giri Subakti ◽  
...  

ABSTRACT:Thermoelectric is a device which has the ability to efficiently convert heat energy into electrical energy. The voltage generated by this thermoelectric is low, so that it needs to be amplified in order to utilized. Strengthening is done using a DC Boost Converter. The resulting tool can be used as a medium for learning renewable energy conversion.ABSTRAK:Termoelektrik adalah komponen elektronika yang memiliki kemampuan mengubah energi panas menjadi energi listrik. Level tegangan yang dihasilkan oleh elemen termoelektrik ini bernilai rendah. Agar dapat  dimanfaatkan, level tegangan ini perlu melalui proses penguatan terlebih dahulu. Penguatan dapat dilakukan dengan menggunakan DC Boost Converter. Dengan cara seperti ini, termoelektrik dapat dimanfaatkan sebagai pembangkit tenaga listrik. Pada penelitian ini dilakukan perancangan purwarupa pembangkit listrik berbasis termoelektrik yang dapat dipergunakan sebagai media pembelajaran konversi energi terbarukan.


2021 ◽  
Vol 20 (4) ◽  
pp. 127-132
Author(s):  
Md Abdullah Al Rakib Rakib ◽  
Md. Saniat Rahman Zishan ◽  
Md. Abid Hasan Abid

In this project, heat energy is used for generatingelectrical energy by a conversion process. The energy harvestingfrom the heat of motorbike has become a new source of portableenergy for rechargeable gadgets. In contrary, the conventionalnonrenewable energy sources have likewise added to anexpansion in contamination on the planet and a disintegration ofhuman wellbeing. From the electrical energy, the mobile phonewill be charged. A thermoelectric generator has been connectedto the hot portion of the motorbike and while riding the bike, anykind of chargeable device will get charged. The prototype of thisresearch work has effectively harvested electrical energy fromheat using thermoelectric generator and has managed to provideenough power at different speeds of the motorbike.


2020 ◽  
Vol 12 (8) ◽  
pp. 1063-1066
Author(s):  
R. Asteekar ◽  
S. Senthamil Selvan ◽  
R. Janani

The present scenario is like that the need of the electrical energy is growing rapidly whereas the resource availability is lagging behind the load demand due to its extinction which leads to hinder our overall generation. It has been observed that the sustainable resources have great future potential to take lead to generate power and supply demand. In the present scenario there exists a few energy resources equivalent to fuel resource. So, there must be a technology to trap the waste and unutilized heat available in the atmosphere and utilize it into the form useful electrical energy. In the current situation, waste heat in the form of thermal energy is recovered and converted into conventional electrical energy. Today, 70% of produced energy in automobiles is wasted in form of heat by exhaust gases. The main outcome of this paper is to manage the waste heat is being generated in the vehicles efficiently, by introducing the concept of “Thermo Electric Generator” (TEG) which convert the waste heat produced inside the vehicles and Re-Generate in the form electric current and give it back to the “storage unit” due to “Seebeck effect” concept.


2019 ◽  
Vol 3 ◽  
pp. 38
Author(s):  
Aby Elsa Putra ◽  
Rifky Rifky ◽  
Agus Fikri

This research was conducted to utilize waste heat energy zinc roof for a revamped into a source of electrical energy. Waste heat utilization of zinc using thermoelectric generator type of TEC-12706 to convert thermal energy into electrical energy and the fan with speed 5 m/s to hold a low temperature in a cold area of heatsink. This research was conducted using a test simulation tool made by zinc, aluminum and acrilic. Waste heat utilization of testing zinc roof done starting at 09.00 WIB until 15.00 WIB for 3 days, with some measured parameters required as the intensity of  solar radiation (Es), airspeed (v), current (I), power (W) and temperature (T) some of which are found in the system tools of simulation testing. From the results of testing performed, the value of the highest efficiency i.e. of 0,00888% and the largest electrical power generated in the amount of 0,0042 W. A high intensity of the solar radiation it will affect the temperature of the environment which will also have an effect on the temperature in the cold area of heatsink, then the value of the temperature difference will also be affected. Heat resistance value on the system also affects the value of the waste heat energy can be changed into electrical energy.


2020 ◽  
Vol 5 (3) ◽  
pp. 58-61

Energy crisis is major problem in this era. Thermoelectric generator is a promising solution for this problem. This research aims to recover waste heat energy from automobile by converting it into electrical energy using thermoelectric generator. Thermoelectric generator is applied at automobile exhaust system to produce electrical energy from heat energy directly with a phenomenon called see-beck effect. This work develops a heat exchanger model with thermoelectric generator for automobile waste heat recovery in which heat source and cold sink are actually modeled. Main emphasis is put on effective temperature difference across the TEGs to get better performance of the exhaust waste heat recovery system. This research shows that the model is able to produce up to 2.67 W energy using 3 Numbers of TEGs in this design.


Sign in / Sign up

Export Citation Format

Share Document