Anaerobic Digestion

2020 ◽  
Author(s):  
Jacob Joseph Lamb

With the growing demand for renewable, sustainable and efficient energy, biogas is one of the most promising methods to meet global renewable energy goals. Anaerobic Digestion: From Biomass to Biogas provides a comprehensive and systematic guide to developing and implement technology for biogas. This book gives a brief overview of biogas as an energy alternative, discusses biomass resources, basic biogas science and engineering, feedstock characterisation, storage, pretreatment and yield optimisation. Plant design, development and process control, emissions, digestate quality, engineering, process optimisation, land use and fertilisation are also included. Biogas generation, cleaning, upgrading and use as a transport fuel are also discussed. Anaerobic Digestion: From Biomass to Biogas is a practical guide to biogas technologies for process developers, producers, industrial chemists and biochemists, biologists, researchers and academics in this area.

2020 ◽  
Vol 6 (2) ◽  
pp. 43 ◽  
Author(s):  
Rubén González ◽  
Judith González ◽  
José G. Rosas ◽  
Richard Smith ◽  
Xiomar Gómez

Anaerobic digestion is an established technological option for the treatment of agricultural residues and livestock wastes beneficially producing renewable energy and digestate as biofertilizer. This technology also has significant potential for becoming an essential component of biorefineries for valorizing lignocellulosic biomass due to its great versatility in assimilating a wide spectrum of carbonaceous materials. The integration of anaerobic digestion and pyrolysis of its digestates for enhanced waste treatment was studied. A theoretical analysis was performed for three scenarios based on the thermal needs of the process: The treatment of swine manure (scenario 1), co-digestion with crop wastes (scenario 2), and addition of residual glycerine (scenario 3). The selected plant design basis was to produce biochar and electricity via combined heat and power units. For electricity production, the best performing scenario was scenario 3 (producing three times more electricity than scenario 1), with scenario 2 resulting in the highest production of biochar (double the biochar production and 1.7 times more electricity than scenario 1), but being highly penalized by the great thermal demand associated with digestate dewatering. Sensitivity analysis was performed using a central composite design, predominantly to evaluate the bio-oil yield and its high heating value, as well as digestate dewatering. Results demonstrated the effect of these parameters on electricity production and on the global thermal demand of the plant. The main significant factor was the solid content attained in the dewatering process, which excessively penalized the global process for values lower than 25% TS.


MRS Bulletin ◽  
2008 ◽  
Vol 33 (4) ◽  
pp. 389-395 ◽  
Author(s):  
Ralph E.H. Sims

AbstractSome forms of renewable energy have long contributed to electricity generation, whereas others are just emerging. For example, large-scale hydropower is a mature technology generating about 16% of global electricity, and many smaller scale systems are also being installed worldwide. Future opportunities to improve the technology are limited but include upgrading of existing plants to gain greater performance efficiencies and reduced maintenance. Geothermal energy, widely used for power generation and direct heat applications, is also mature, but new technologies could improve plant designs, extend their lifetimes, and improve reliability. By contrast, ocean energy is an emerging renewable energy technology. Design, development, and testing of a myriad of devices remain mainly in the research and development stage, with many opportunities for materials science to improve design and performance, reduce costly maintenance procedures, and extend plant operating lifetimes under the harsh marine environment.


Author(s):  
G. Moitzi ◽  
B. Amon ◽  
T. Amon ◽  
V. Kryvoruchko ◽  
C. Wagner-Alt ◽  
...  

The paper presents the investigations results of the effect of anaerobic digestion on emissions of NH3, N2O and CH4 during storage and after application of slurry. Dairy cattle and pig slurry was stored in concrete tanks (12 m3) over a period of 100 days. Gaseous emissions were collected continuously by a large open dynamic chamber. Gas concentrations (NH3, N2O and CH4) were analysed by high resolution FTIR-spectrometry. After storage, the slurries were surface applied on permanent grassland. NH3 emissions were followed for two days by a large open-dynamic-chamber. N2O and CH4 emissions were quantified with closed chambers until day 20 after application. 65 – 95 % of net total NH3 emissions were lost after slurry application. NH3 abatement will therefore be effective, if low emission application techniques are used. This is especially important when anaerobically digested slurry is applied. More than 90 % of net total CH4 emissions from untreated slurry were lost during slurry storage. Anaerobically digested slurry still emitted methane during storage. These emissions can be totally avoided if the secondary fermentation tank and the slurry store are connected with the gas bearing system of the biogas plant. Then, CH4 produced in these tanks is collected and used as renewable energy source. In conclusion it can be assumed that biogas plants will play a major role in the reduction of greenhouse gas emissions as they generate renewable energy and reduce CH4 emissions during manure storage. Furthermore, anaerobic digestion improves the fertiliser value of animal manures.


2021 ◽  
Author(s):  
Peyman Sadrimajd ◽  
Patrick Mannion ◽  
Enda Howley ◽  
Piet N. L. Lens

Anaerobic Digestion (AD) is a waste treatment technology widely used for wastewater and solid waste treatment, with the advantage of being a source of renewable energy in the form of biogas. Anaerobic digestion model number 1 (ADM1) is the most common mathematical model available for AD modelling. Commercial software implementations of ADM1 are available but have limited flexibility and availability due to the closed sources and licensing fees. Python is the fastest growing programming language and is open source freely available. Python implementation of ADM1 makes this AD model available to the mass user base of the Python ecosystem and it [prime]s libraries. The open easy to use implementation in PyADM1 makes it more accessible and provides possibilities for flexible direct use of the model linked to other software, e.g. machine learning libraries or Linux operating system on embedded hardware.


2021 ◽  
Author(s):  
Júlia Ronzella Ottoni ◽  
Suzan Prado Fernandes Bernal ◽  
Tiago Joelzer Marteres ◽  
Franciele Natividade Luiz ◽  
Viviane Piccin dos Santos ◽  
...  

Abstract The search for sustainable development has led countries around the world to seek the improvement of technologies that use renewable energy sources. One of the alternatives in the production of renewable energy comes from the use of waste including urban solids, animal excrement from livestock and biomass residues from agro-industrial plants. These materials may be used in the production of biogas, making its production highly sustainable and environmentally friendly, in addition to reducing public expenses for the treatment of those wastes. The present study evaluated the cultivated and uncultivated microbial community from a substrate (starter) used as an adapter for biogas production in anaerobic digestion processes. 16S rDNA metabarcoding revealed domain of bacteria belonging to the phyla Firmicutes, Bacteroidota, Chloroflexi and Synergistota. The methanogenic group was represented by the phyla Halobacterota and Euryarchaeota. Through 16S rRNA sequencing analysis of isolates recovered from the starter culture, the genera Rhodococcus, Vagococcus, Lysinibacillus, Niallia, Priestia, Robertmurraya, Luteimonas and Proteiniclasticum were recovered, groups that were not observed in the metabarcoding data. The groups mentioned are involved in the metabolism pathways of sugars and other compounds derived from lignocellulosic material, as well as in anaerobic methane production processes. The results demonstrate that culture-dependent approaches, such as isolation and sequencing of isolates, as well as culture-independent studies, such as the Metabarcoding approach, are complementary methodologies that, when integrated, provide robust and comprehensive information about the microbial communities involved in various processes, including the production of biogas in anaerobic digestion processes.


2020 ◽  
Vol 9 (5) ◽  
pp. 324
Author(s):  
Jiaao Guo ◽  
Victoria Fast ◽  
Philip Teri ◽  
Kirby Calvert

Land-based, utility-scale renewable energy (RE) systems using wind or solar resources to generate electricity is becoming a decisive solution to meet long-term carbon emission reduction goals. Local governments are responding in kind, by adopting their own goals and/or establishing policies to facilitate successful implementations of RE in their jurisdiction. One factor to successful RE development is to locate the most suitable lands, while continuing to sustain land-based economies and ecosystem services. Local governments often have limited resources; and this is especially true for small, land-constrained local governments. In this paper, we illustrate how a standardized RE technical mapping framework can be used by local governments to advance the implementation of RE in land-constrained areas, through a case study in the Town of Canmore, Alberta. Canmore has a limited municipal area surrounded by the Canadian Rockies, along with complex land-use bylaw and environmentally sensitive habitats. This mapping framework accounts for these conditions as it considers theoretical resources, technically recoverable lands, legally accessible lands, and the spatial capital cost of connecting new RE facilities. Different land-use planning scenarios are considered including changing setback buffers and expanding restrictions on development to all environmentally sensitive districts. The total RE potentials are then estimated based on the least-conflict lands. Technically speaking, even under restrictive land suitability scenarios, Canmore holds enough land to achieve ambitious RE targets, but opportunities and challenges to implementation remain. To eventually succeed in its long-term emission reduction goal, the most decisive step for Canmore is to balance the growth of energy demands, land-use changes, and practicable RE development. Mapping systems that can study the influence of land-use planning decisions on RE potential are critical to achieving this balance.


Sign in / Sign up

Export Citation Format

Share Document