Microbiology of AD

2020 ◽  
Author(s):  
Jacob Joseph Lamb

Anaerobic digestion is performed by a wide variety of microorganisms in an anaerobic environment. In order to understand the microbial diversity, high-performance sequencing of 16S rRNA can offer high-resolution diversity data. Moreover, to understand the dynamics of the microorganisms, further analysis of the culture-independent systems through meta-omic techniques can be achieved to understand the function and structure of the microorganism community. This chapter will provide the main molecular methods for determining community diversity and dynamics.

2018 ◽  
Vol 5 (2) ◽  
Author(s):  
Andrew Kozlov ◽  
Lorenzo Bean ◽  
Emilie V Hill ◽  
Lisa Zhao ◽  
Eric Li ◽  
...  

Abstract Background Intra-abdominal abscesses are localized collections of pus, which generally arise from a breach in the normal mucosal defense barrier that allows bacteria from gastrointestinal tract, and less commonly from the gynecologic or urinary tract, to induce inflammation, resulting in an infection. The microbiology of these abscesses is usually polymicrobial, associated with the primary disease process. However, the microbial identity, diversity and richness in intra-abdominal abscesses have not been well characterized, due in part to the difficulty in cultivating commensal organisms using standard culture-based techniques. Methods We used culture-independent 16S rRNA Illumina sequencing to characterize bacterial communities in intra-abdominal abscesses collected by percutaneous drainage. A total of 43 abscess samples, including 19 (44.2%) Gram stain and culture-negative specimens, were analyzed and compared with results from conventional microbiologic cultures. Results Microbial composition was determined in 8 of 19 culture-negative samples and 18 of 24 culture-positive samples, identifying a total of 221 bacterial taxa or operational taxonomic units (OTUs) and averaging 13.1 OTUs per sample (interquartile range, 8–16.5 OTUs). Microbial richness for monomicrobial and polymicrobial samples was significantly higher than culture-negative samples (17 and 15.2 OTUs vs 8 OTUs, respectively), with a trend toward a higher microbial diversity (Shannon diversity index of 0.87 and 1.18 vs 0.58, respectively). Conclusions The bacterial consortia identified by cultures correlated poorly with the microbial composition determined by 16S rRNA sequencing, and in most cases, the cultured isolates were minority constituents of the overall abscess microbiome. Intra-abdominal abscesses were generally polymicrobial with a surprisingly high microbial diversity, but standard culture-based techniques failed to reveal this diversity. These data suggest that molecular-based approaches may be helpful for documenting the presence of bacteria in intra-abdominal abscesses where standard cultures are unrevealing, particularly in the setting of prior antibiotic exposure.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Binbin Hu ◽  
Kaiyuan Gu ◽  
Jiangshiqi Gong ◽  
Ke Zhang ◽  
Dan Chen ◽  
...  

AbstractThe purpose of the study is to explore the effect of flue-curing procedure on the diversity of microbial communities in tobaccos and the dynamic change of compositions of microbial communities in the flue-curing process. It expects to provide a theoretical basis for the application of microbes in tobacco leaves and a theoretical basis and idea for optimization of the flue-curing technologies. By investigating tobacco variety K326, the tests were carried out for comparing the conventional flue-curing procedure and dry-ball temperature set and wet-ball temperature degradation flue-curing procedure. Based on the culture-independent approach and high-throughput sequencing procedure, the relationship between the flue-curing procedure for tobaccos and microbial communities in tobaccos was revealed by measuring the dynamic change of microbial communities. The results indicated that:(1) Relative to surface wiping method, washing method was more suitable for the sampling of microbes on the surface of tobacco leaves; (2) Dry-ball temperature set and wet-ball temperature degradation flue-curing procedure was more favorable for maintaining the microbial diversity of tobaccos; (3) Relative to bacteria of the tobaccos, the succession rule of the fungal communities in tobaccos was relatively steady; (4)Compared with bacterial community diversity, the fungal community diversity presented an obvious negative correlation with temperature and humidity during the flue-curing process. (5) The function of bacterial communities in tobaccos matched with the material transformation law of tobaccos, having a direct correlation on the flue-curing process. In short, Dry-ball temperature set and wet-ball temperature degradation flue-curing procedure can more favorably maintain the microbial diversity of tobaccos; moreover, the function of the tobacco system involved in microbes in tobaccos was closely related to the material transformation law of tobaccos in the flue-curing process. It validated that the bacteria in tobaccos play an important role in the flue-curing process of tobaccos.


2019 ◽  
Author(s):  
Peter Rubbens ◽  
Ruben Props ◽  
Frederiek-Maarten Kerckhof ◽  
Nico Boon ◽  
Willem Waegeman

AbstractMicrobial flow cytometry allows to rapidly characterize microbial communities. Recent research has demonstrated a moderate to strong connection between the cytometric diversity and taxonomic diversity based on 16S rRNA gene amplicon sequencing data. This creates the opportunity to integrate both types of data to study and predict the microbial community diversity in an automated and efficient way. However, microbial flow cytometry data results in a number of unique challenges that need to be addressed. The results of our work are threefold: i) We expand current microbial cytometry fingerprinting approaches by proposing and validating a model-based fingerprinting approach based upon Gaussian Mixture Models, which we called PhenoGMM. ii) We show that microbial diversity can be rapidly estimated by PhenoGMM. In combination with a supervised machine learning model, diversity estimations based on 16S rRNA gene amplicon sequencing data can be predicted. iii) We evaluate our method extensively by using multiple datasets from different ecosystems and compare its predictive power with a generic binning fingerprinting approach that is commonly used in microbial flow cytometry. These results demonstrate the strong connection between the genetic make-up of a microbial community and its phenotypic properties as measured by flow cytometry. Our workflow facilitates the study of microbial diversity and community dynamics using flow cytometry in a fast and quantitative way.ImportanceMicroorganisms are vital components in various ecoystems on Earth. In order to investigate the microbial diversity, researchers have largely relied on the analysis of 16S rRNA gene sequences from DNA. Flow cytometry has been proposed as an alternative technique to characterize microbial community diversity and dynamics. It is an optical technique, able to rapidly characterize a number of phenotypic properties of individual cells. So-called fingerprinting techniques are needed in order to describe microbial community diversity and dynamics based on flow cytometry data. In this work, we propose a more advanced fingerprinting strategy based on Gaussian Mixture Models. When samples have been analyzed by both flow cytometry and 16S rRNA gene amplicon sequencing, we show that supervised machine learning models can be used to find the relationship between the two types of data. We evaluate our workflow on datasets from different ecosystems, illustrating its general applicability for the analysisof microbial flow cytometry data. PhenoGMM facilitates the rapid characterization and predictive modelling of microbial diversity using flow cytometry.


2012 ◽  
Vol 78 (21) ◽  
pp. 7527-7537 ◽  
Author(s):  
David R. Andrew ◽  
Robert R. Fitak ◽  
Adrian Munguia-Vega ◽  
Adriana Racolta ◽  
Vincent G. Martinson ◽  
...  

ABSTRACTHigh-throughput, culture-independent surveys of bacterial and archaeal communities in soil have illuminated the importance of both edaphic and biotic influences on microbial diversity, yet few studies compare the relative importance of these factors. Here, we employ multiplexed pyrosequencing of the 16S rRNA gene to examine soil- and cactus-associated rhizosphere microbial communities of the Sonoran Desert and the artificial desert biome of the Biosphere2 research facility. The results of our replicate sampling approach show that microbial communities are shaped primarily by soil characteristics associated with geographic locations, while rhizosphere associations are secondary factors. We found little difference between rhizosphere communities of the ecologically similar saguaro (Carnegiea gigantea) and cardón (Pachycereus pringlei) cacti. Both rhizosphere and soil communities were dominated by the disproportionately abundantCrenarchaeotaclassThermoprotei, which comprised 18.7% of 183,320 total pyrosequencing reads from a comparatively small number (1,337 or 3.7%) of the 36,162 total operational taxonomic units (OTUs). OTUs common to both soil and rhizosphere samples comprised the bulk of raw sequence reads, suggesting that the shared community of soil and rhizosphere microbes constitute common and abundant taxa, particularly in the bacterial phylaProteobacteria,Actinobacteria,Planctomycetes,Firmicutes,Bacteroidetes,Chloroflexi, andAcidobacteria. The vast majority of OTUs, however, were rare and unique to either soil or rhizosphere communities and differed among locations dozens of kilometers apart. Several soil properties, particularly soil pH and carbon content, were significantly correlated with community diversity measurements. Our results highlight the importance of culture-independent approaches in surveying microbial communities of extreme environments.


Author(s):  
K. Ogura ◽  
H. Nishioka ◽  
N. Ikeo ◽  
T. Kanazawa ◽  
J. Teshima

Structural appraisal of thin film magnetic media is very important because their magnetic characters such as magnetic hysteresis and recording behaviors are drastically altered by the grain structure of the film. However, in general, the surface of thin film magnetic media of magnetic recording disk which is process completed is protected by several-nm thick sputtered carbon. Therefore, high-resolution observation of a cross-sectional plane of a disk is strongly required to see the fine structure of the thin film magnetic media. Additionally, observation of the top protection film is also very important in this field.Recently, several different process-completed magnetic disks were examined with a UHR-SEM, the JEOL JSM 890, which consisted of a field emission gun and a high-performance immerse lens. The disks were cut into approximately 10-mm squares, the bottom of these pieces were carved into more than half of the total thickness of the disks, and they were bent. There were many cracks on the bent disks. When these disks were observed with the UHR-SEM, it was very difficult to observe the fine structure of thin film magnetic media which appeared on the cracks, because of a very heavy contamination on the observing area.


Sign in / Sign up

Export Citation Format

Share Document