scholarly journals High doses of cobalt inhibited hair follicle development in Rex Rabbits

2019 ◽  
Vol 27 (4) ◽  
pp. 217
Author(s):  
L. Liu ◽  
Q. Gao ◽  
C. Wang ◽  
Z. H. Fu ◽  
K. Wang ◽  
...  

<p>An experiment was conducted to investigate the effect of cobalt supplementation on hair follicle development in rabbits. Rex rabbits (30-d-old, n=180) were divided randomly into five equal treatment groups: rabbits fed a basal diet (control, measured cobalt content of 0.27 mg/kg) or rabbits fed a basal diet with an additional 0.1, 0.4, 1.6 or 6.4 mg/kg cobalt (in the form of cobalt sulfate) supplementation (measured cobalt contents of 0.35, 0.60, 1.83 and 6.62 mg/kg, respectively). Treatment with 6.4 mg/kg cobalt significantly decreased hair follicle density (<em>P</em>&lt;0.05), while low levels of cobalt (0.1-1.6 mg/kg) had no effect on hair follicle density (<em>P</em>&gt;0.05). The addition of dietary cobalt at the highest level examined (6.4 mg/kg) significantly increased the gene expression of bone morphogenetic protein (BMP) 2 and BMP4 in skin tissue (<em>P</em>&lt;0.05), while the mRNA levels of versican, alkaline phosphatase, hepatocyte growth factor, and noggin remained unchanged (<em>P</em>&gt;0.05). Compared with their levels in the control group, dietary cobalt treatment significantly suppressed the protein levels of p-mechanistic target of rapamycin (mTOR) and p-ribosomal protein S6 protein kinase (<em>P</em>&lt;0.05) but did not alter the protein levels of p-AMP-activated protein kinase, Wnt10b or p-β-catenin (<em>P</em>&gt;0.05). In conclusion, cobalt at the highest concentration examined inhibited hair follicle development, which may have involved the mTOR-BMP signalling pathway.</p>

Pathobiology ◽  
2021 ◽  
pp. 1-12
Author(s):  
Ying Xie ◽  
Yuanyuan Ruan ◽  
Huimei Zou ◽  
Yixin Wang ◽  
Xin Wu ◽  
...  

<b><i>Objective:</i></b> The goal of the present study was to determine the expression of yes-associated protein 1 (YAP1) in renal tissues of mice with lupus nephritis (LN) and elucidate its role in the progression of renal fibrosis. <b><i>Methods:</i></b> C57BL/6 mice and MRL/lpr mice were selected for experimental comparison. Mouse kidney tissues were removed and sectioned for hematoxylin and eosin staining, Masson’s trichome staining, Sirius staining, and immunohistochemistry. The mRNA and protein levels of YAP1 in mouse kidney tissues were detected, and the correlation between YAP1 and fibronectin (FN) mRNA levels was analyzed. Mouse renal epithelial cells were used for in vitro experiments. After transfection and stimulation, the cells were divided into 4 groups, namely the C57BL/6 serum group (group 1), the MRL/lpr serum group (group 2), the MRL/lpr serum + siRNA-negative control group (group 3), and the MRL/lpr serum + siRNA-YAP1 group (group 4). Epithelial-mesenchymal transition (EMT) markers in each group were detected by Western blotting and immunofluorescence staining. Serum creatinine, blood urea nitrogen, and urinary protein levels were detected and assessed for their correlation with YAP1 mRNA levels by Spearman’s analysis. <b><i>Results:</i></b> Compared to C57BL/6 mice, MRL/lpr mice exhibited obvious changes in fibrosis in renal tissues. In addition, YAP1 expression was significantly higher in the renal tissues of MRL/lpr mice than in those of C57BL/6 mice, and YAP1 mRNA levels were positively correlated with those of FN. YAP1 silencing in lupus serum-stimulated cells could effectively relieve serum-induced EMT. Finally, we observed that YAP1 mRNA levels in mouse kidney tissue were significantly and positively correlated with the degree of renal function injury. <b><i>Conclusion:</i></b> YAP1 expression in the kidney tissues of LN mice was higher than that observed in normal mice, indicating that YAP1 may play an important role in the occurrence and development of LN.


2001 ◽  
Vol 71 (2) ◽  
pp. 171-178 ◽  
Author(s):  
Lars Mecklenburg ◽  
Motonobu Nakamura ◽  
John P. Sundberg ◽  
Ralf Paus

1995 ◽  
Vol 104 (5) ◽  
pp. 21-22 ◽  
Author(s):  
Tonja Kartasova ◽  
Aline B. Scandurro ◽  
Mitchell F. Denning ◽  
Stuart H. Yuspa ◽  
Ulrike Lichti ◽  
...  

2012 ◽  
Vol 120 (02) ◽  
pp. 84-88 ◽  
Author(s):  
S. Chen ◽  
X. Zhuang ◽  
Y. Liu ◽  
A. Sun ◽  
C. Chen

AbstractLipin1, a lately indentified adipokine, may link obesity with insulin resistance and diabetes. The present study aimed to investigate the changes and significance of lipin1 expression and lipin1-AMPK signaling in diet-induced hepatic insulin resistance.24 4-week-old Male Wistar rats were randomly divided into 2 groups: (1) control group (CO), (2) high-fat diet group (HF). Insulin sensitivity was evaluated by hyperinsulinemic-euglycemic clamp technique. The mRNA levels of α1 and α2 subunit of AMPKα as well as Lipin1 were measured using Real-time RT-PCR. The activities of AMPKα and Akt were evaluated by detection of p-AMPKα (Thr-172) and p-Akt (ser473) by Western blot.After treatment of 4 months, HF group showed significantly increased levels of body weight, fasting plasma glucose and insulin levels; Plasma and liver total cholesterol (TC), triglycerides (TG) levels were also markedly elevated; Lipin1 expression at both mRNA and protein levels were significantly deceased. Compared with CO group, the mRNA and protein levels of AMPKα1 and AMPKα2 were not changed, whereas the p-AMPK (Thr-172) and p-AKT (ser473) levels in liver were significantly decreased in HF group.These findings indicated that the decrease in lipin1 expression and AMPKα activation may contribute to hepatic insulin resistance in diet-induced obese rats.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243507
Author(s):  
Zhihong Wu ◽  
Erhan Hai ◽  
Zhengyang Di ◽  
Rong Ma ◽  
Fangzheng Shang ◽  
...  

Objective Mature hair follicles represent an important stage of hair follicle development, which determines the stability of hair follicle structure and its ability to enter the hair cycle. Here, we used weighted gene co-expression network analysis (WGCNA) to identify hub genes of mature skin and hair follicles in Inner Mongolian cashmere goats. Methods We used transcriptome sequencing data for the skin of Inner Mongolian cashmere goats from fetal days 45–135 days, and divided the co expressed genes into different modules by WGCNA. Characteristic values were used to screen out modules that were highly expressed in mature skin follicles. Module hub genes were then selected based on the correlation coefficients between the gene and module eigenvalue, gene connectivity, and Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The results were confirmed by quantitative polymerase chain reaction (qPCR). Results Ten modules were successfully defined, of which one, with a total of 3166 genes, was selected as a specific module through sample and gene expression pattern analyses. A total of 584 candidate hub genes in the module were screened by the correlation coefficients between the genes and module eigenvalue and gene connectivity. Finally, GO/KEGG functional enrichment analyses detected WNT10A as a key gene in the development and maturation of skin hair follicles in fetal Inner Mongolian cashmere goats. qPCR showed that the expression trends of 13 genes from seven fetal skin samples were consistent with the sequencing results, indicating that the sequencing results were reliable.n


2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Subhrangsu S Mandal ◽  
Khairul I Ansari ◽  
Imran Hussain ◽  
Sahba Kasiri ◽  
Bishakha Shrestha

2020 ◽  
Author(s):  
Jing Huang ◽  
Ming Ding ◽  
Ying Wu ◽  
Shuhua Han ◽  
Yan Xie ◽  
...  

Abstract Background Radioactive seed is a method for treating drug-resistant, late-stage non-small cell lung cancer (NSCLC), but has undesirable side effects. Gambogic acid (GA), an ingredient of traditional Chinese medicine, exerts broad-spectrum antitumour activities via several pathways. This study aimed to elucidate the mechanism involved in the combined effect of low-dose GA and NaI131 to sensitize the antitumour activity of NaI131 in drug-resistant NSCLC cells. Methods Human NSCLC cell line A549 and drug-resistant cell lines A549/DDP and A549/Taxol were treated with NaI131, low-dose GA or a combination of both; control group of each cell line was treated with phosphate-buffered saline. Following treatment, cell proliferation, apoptosis, cell cycle, and levels of expression of apoptosis-related proteins namely CDK1, Cyclin B, mtp53, HSP90, and Bax, Bcl-2 respectively, and P-glycoprotein 1 (P-gp) known to confer resistance to chemotherapy, were detected using western blotting and immunofluorescence. mRNA levels of mtp53 and HSP90 were measured using qRT-PCR. Results Compared to the control group, A549, A549/DDP, and A549/Taxol cells treated with NaI131, GA or combination of drugs exhibited G2/M arrest, increased percentage of total apoptotic cells, significantly reduced protein levels of CDK1, Cyclin B, mtp53, HSP90, Bcl-2 and P-gp, increased protein levels of Bax and decreased mRNA levels of mtp53 and HSP90. The changes in the combination group were significantly different from the other groups. Conclusion In NSCLC cell lines, low-dose GA could enhance the effect of NaI131 on G2/M arrest, promote cell apoptosis, reduce drug-resistance and hence could be explored as a potential radionuclide sensitizer.


2017 ◽  
Vol 15 (3) ◽  
pp. 377-386
Author(s):  
Seunghee Bae ◽  
Ki-Heon Lee ◽  
In-Ho Lee ◽  
Mi Kyung Kim ◽  
Jae Ho Lee

Development ◽  
1999 ◽  
Vol 126 (14) ◽  
pp. 3263-3274 ◽  
Author(s):  
G.M. Souza ◽  
A.M. da Silva ◽  
A. Kuspa

When nutrients are depleted, Dictyostelium cells undergo cell cycle arrest and initiate a developmental program that ensures survival. The YakA protein kinase governs this transition by regulating the cell cycle, repressing growth-phase genes and inducing developmental genes. YakA mutants have a shortened cell cycle and do not initiate development. A suppressor of yakA that reverses most of the developmental defects of yakA- cells, but none of their growth defects was identified. The inactivated gene, pufA, encodes a member of the Puf protein family of translational regulators. Upon starvation, pufA- cells develop precociously and overexpress developmentally important proteins, including the catalytic subunit of cAMP-dependent protein kinase, PKA-C. Gel mobility-shift assays using a 200-base segment of PKA-C's mRNA as a probe reveals a complex with wild-type cell extracts, but not with pufA- cell extracts, suggesting the presence of a potential PufA recognition element in the PKA-C mRNA. PKA-C protein levels are low at the times of development when this complex is detectable, whereas when the complex is undetectable PKA-C levels are high. There is also an inverse relationship between PufA and PKA-C protein levels at all times of development in every mutant tested. Furthermore, expression of the putative PufA recognition elements in wild-type cells causes precocious aggregation and PKA-C overexpression, phenocopying a pufA mutation. Finally, YakA function is required for the decline of PufA protein and mRNA levels in the first 4 hours of development. We propose that PufA is a translational regulator that directly controls PKA-C synthesis and that YakA regulates the initiation of development by inhibiting the expression of PufA. Our work also suggests that Puf protein translational regulation evolved prior to the radiation of metazoan species.


Sign in / Sign up

Export Citation Format

Share Document