Isolation Technique/ Barrier Nursing

2011 ◽  
pp. 175-175
Author(s):  
I Clement
1988 ◽  
Vol 49 (C4) ◽  
pp. C4-549-C4-553 ◽  
Author(s):  
E. FIGUERAS ◽  
S. HAZEBROUCK ◽  
F. VAN DE WIELE
Keyword(s):  

2018 ◽  
Author(s):  
Zhi Jie Lau ◽  
Chris Philips

Abstract Thermal-Laser Signal Injection Microscopy (T-LSIM) is a widely used fault isolation technique. Although there are several T-LSIM systems on the market, each is limited in terms of the voltage and current it can produce. In this paper, the authors explain how they incorporated an Amplified External Isolated Source-Sense (AxISS) unit into their T-LSIM platform, increasing its current sourcing capability and voltage biasing range. They also provide examples highlighting the types of faults and failures that the modified system can detect.


Author(s):  
Lucile C. Teague Sheridan ◽  
Linda Conohan ◽  
Chong Khiam Oh

Abstract Atomic force microscopy (AFM) methods have provided a wealth of knowledge into the topographic, electrical, mechanical, magnetic, and electrochemical properties of surfaces and materials at the micro- and nanoscale over the last several decades. More specifically, the application of conductive AFM (CAFM) techniques for failure analysis can provide a simultaneous view of the conductivity and topographic properties of the patterned features. As CMOS technology progresses to smaller and smaller devices, the benefits of CAFM techniques have become apparent [1-3]. Herein, we review several cases in which CAFM has been utilized as a fault-isolation technique to detect middle of line (MOL) and front end of line (FEOL) buried defects in 20nm technologies and beyond.


2018 ◽  
Author(s):  
Chun Haur Khoo

Abstract Driven by the cost reduction and miniaturization, Wafer Level Chip Scale Packaging (WLCSP) has experienced significant growth mainly driven by mobile consumer products. Depending on the customers or manufacturing needs, the bare silicon backside of the WLCSP may be covered with a backside laminate layer. In the failure analysis lab, in order to perform the die level backside fault isolation technique using Photon Emission Microscope (PEM) or Laser Signal Injection Microscope (LSIM), the backside laminate layer needs to be removed. Most of the time, this is done using the mechanical polishing method. This paper outlines the backside laminate removal method of WLCSP using a near infrared (NIR) laser that produces laser energy in the 1,064 nm range. This method significantly reduces the sample preparation time and also reduces the risk of mechanical damage as there is no application of mechanical force. This is an effective method for WLCSP mounted on a PCB board.


Author(s):  
Chi-Lin Huang ◽  
Yu Hsiang Shu

Abstract Conventional isolation techniques, such as Optical Beam Induced Resistance Change (OBIRCH) or photoemission microscopy (PEM) frequently fail to locate failure points when only applied to power pin of the semiconductor device. In this paper, a novel OBIRCH failure isolation technique is utilized to detect leakage failures. Different test conditions are presented to identify the differences in current when all input pins are pulled high in an OBIRCH system. In order to verify a failure point, it is necessary to perform electrical analysis of the suspected failure point in the failing sample. In general, Conductive Atomic Force Microscope (C-AFM) and a Nano-Prober is sufficient to provide the electrical data required for failure analysis. Experiment results, however, prove that this novel OBIRCH failure isolation technique is effective in locating the failure point, especially for leakage failures. The failure mechanism is illustrated using cross-sectional TEM.


Author(s):  
Yoav Weizman ◽  
Ezra Baruch ◽  
Michael Zimin

Abstract Emission microscopy is usually implemented for static operating conditions of the DUT. Under dynamic operation it is nearly impossible to identify a failure out of the noisy background. In this paper we describe a simple technique that could be used in cases where the temporal location of the failure was identified however the physical location is not known or partially known. The technique was originally introduced to investigate IDDq failures (1) in order to investigate timing related issues with automated tester equipment. Ishii et al (2) improved the technique and coupled an emission microscope to the tester for functional failure analysis of DRAMs and logic LSIs. Using consecutive step-by-step tester halting coupled to a sensitive emission microscope, one is able detect the failure while it occurs. We will describe a failure analysis case in which marginal design and process variations combined to create contention at certain logic states. Since the failure occurred arbitrarily, the use of the traditional LVP, that requires a stable failure, misled the analysts. Furthermore, even if we used advanced tools as PICA, which was actually designed to locate such failures, we believe that there would have been little chance of observing the failure since the failure appeared only below 1.3V where the PICA tool has diminished photon detection sensitivity. For this case the step-by-step halting technique helped to isolate the failure location after a short round of measurements. With the use of logic simulations, the root cause of the failure was clear once the failing gate was known.


Author(s):  
Lihong Cao ◽  
Manasa Venkata ◽  
Meng Yeow Tay ◽  
Wen Qiu ◽  
J. Alton ◽  
...  

Abstract Electro-optical terahertz pulse reflectometry (EOTPR) was introduced last year to isolate faults in advanced IC packages. The EOTPR system provides 10μm accuracy that can be used to non-destructively localize a package-level failure. In this paper, an EOTPR system is used for non-destructive fault isolation and identification for both 2D and 2.5D with TSV structure of flip-chip packages. The experimental results demonstrate higher accuracy of the EOTPR system in determining the distance to defect compared to the traditional time-domain reflectometry (TDR) systems.


Chicken meat are being widely consumed as they contain high protein and a healthier unsaturated fat type. Chicken burger represent a consumer palatable chicken product. Both chicken and its products are liable to different types of contamination during their preparation and processing. Contamination by S. aureus and its enterotoxins poses a major public health hazard to chicken meat consumes. During this study 100 different samples of chicken fillet, deboned thigh, wing, mechanically deboned meat (MDM) and chicken burger (20 each) was collected from market and investigated for their S. aureus count and ability of the isolated strains to produce enterotoxins using conventional plating and isolation technique as well as using SET-RPLA toxin detection kit. Results revealed that mean values of S. aureus count in all samples exceeded the permissible limits and hence being unacceptable. MDM isolated exhibited staphylococcal enterotoxins (SEs) production of three different types SEA, SEC and SED. Meanwhile chicken burger S. aureus isolates produced only SEA and SEC enterotoxins. While isolated S. aureus from chicken fillet and deboned thigh didn’t exhibit any enterotoxin production activity. It’s recommended to follow the hygienic practices during different processing stages to avoid the risk of S. aureus and its enterotoxins.


Sign in / Sign up

Export Citation Format

Share Document