Pseudo-Dynamic Fault Isolation Technique Using Backside Emission Microscopy – Case Study, Where All Other Methods Fail

Author(s):  
Yoav Weizman ◽  
Ezra Baruch ◽  
Michael Zimin

Abstract Emission microscopy is usually implemented for static operating conditions of the DUT. Under dynamic operation it is nearly impossible to identify a failure out of the noisy background. In this paper we describe a simple technique that could be used in cases where the temporal location of the failure was identified however the physical location is not known or partially known. The technique was originally introduced to investigate IDDq failures (1) in order to investigate timing related issues with automated tester equipment. Ishii et al (2) improved the technique and coupled an emission microscope to the tester for functional failure analysis of DRAMs and logic LSIs. Using consecutive step-by-step tester halting coupled to a sensitive emission microscope, one is able detect the failure while it occurs. We will describe a failure analysis case in which marginal design and process variations combined to create contention at certain logic states. Since the failure occurred arbitrarily, the use of the traditional LVP, that requires a stable failure, misled the analysts. Furthermore, even if we used advanced tools as PICA, which was actually designed to locate such failures, we believe that there would have been little chance of observing the failure since the failure appeared only below 1.3V where the PICA tool has diminished photon detection sensitivity. For this case the step-by-step halting technique helped to isolate the failure location after a short round of measurements. With the use of logic simulations, the root cause of the failure was clear once the failing gate was known.

2018 ◽  
Author(s):  
Yuting Wei ◽  
Chuan Zhang ◽  
Liangshan Chen ◽  
Oh Chong Khiam

Abstract E-beam induced current technique is a fault isolation technique based on SEM-based nanoprobers. Electron beam induced current (EBIC) can help failure analysts quickly identify the defective device with abnormal junction behavior from a relatively large area of interest. Using EBIC, defects can be pin-pointed down to individual Fin, which significantly enhanced the success rate. In this paper, two cases are used as examples to illustrate how this failure analysis (FA) methodology provides a powerful and efficient solution in localizing defective fins. In the first case, a local full bit-line fail was submitted for failure analysis. In the second case, a MOS capacitor parametric test structure designed to monitor gate oxide break down voltage that showed early break down behavior during in-line test. Failure analysis was requested to investigate the root-cause.


Author(s):  
Hung Chin Chen ◽  
Chih Yang Tsai ◽  
Shih Yuan Liu ◽  
Yu Pang Chang ◽  
Jian Chang Lin

Abstract Fault isolation is the most important step for Failure Analysis (FA), and it is closely linked with the success rate of failure mechanism finding. In this paper, we will introduce a case that hard to debug with traditional FA skills. In order to find out its root cause, several advanced techniques such as layout tracing, circuit edit and Infrared Ray–Optical Beam Induced Resistance Change (IR-OBIRCH) analysis had been applied. The circuit edit was performed following layout tracing for depositing probing pads by Focused Ion Beam (FIB). Then, IR-OBIRCH analysis with biasing on the two FIB deposited probing pads and a failure location was detected. Finally, the root cause of inter- metal layer bridge was found in subsequent physical failure analysis.


Author(s):  
N.M. Wu ◽  
K. Weaver ◽  
J.H. Lin

Abstract With increasing complexity of circuit layout on the die and special packages in which the die are flipped over, failure analysis on the die front side, sometimes, can not solve the problems or is not possible by opening the front side of the package to expose the die front side. This paper discusses fault isolation techniques and procedures used on the back side of the die. The two major back side techniques, back side emission microscopy and back side OBIC (Optical Beam Induced Current), are introduced and applied to solve real problems in failure analysis. A back side decapsulation technique and procedure are also introduced. Last, several examples are given. The results indicated that the success in finding root cause of failure is greatly increased when these techniques are used in addition to the traditional front side analysis approaches.


Author(s):  
Hua Younan ◽  
Chu Susan ◽  
Gui Dong ◽  
Mo Zhiqiang ◽  
Xing Zhenxiang ◽  
...  

Abstract As device feature size continues to shrink, the reducing gate oxide thickness puts more stringent requirements on gate dielectric quality in terms of defect density and contamination concentration. As a result, analyzing gate oxide integrity and dielectric breakdown failures during wafer fabrication becomes more difficult. Using a traditional FA flow and methods some defects were observed after electrical fault isolation using emission microscopic tools such as EMMI and TIVA. Even with some success with conventional FA the root cause was unclear. In this paper, we will propose an analysis flow for GOI failures to improve FA’s success rate. In this new proposed flow both a chemical method, Wright Etch, and SIMS analysis techniques are employed to identify root cause of the GOI failures after EFA fault isolation. In general, the shape of the defect might provide information as to the root cause of the GOI failure, whether related to PID or contamination. However, Wright Etch results are inadequate to answer the questions of whether the failure is caused by contamination or not. If there is a contaminate another technique is required to determine what the contaminant is and where it comes from. If the failure is confirmed to be due to contamination, SIMS is used to further determine the contamination source at the ppm-ppb level. In this paper, a real case of GOI failure will be discussed and presented. Using the new failure analysis flow, the root cause was identified to be iron contamination introduced from a worn out part made of stainless steel.


Author(s):  
Y. N. Hua ◽  
Z. R. Guo ◽  
L. H. An ◽  
Shailesh Redkar

Abstract In this paper, some low yield cases in Flat ROM device (0.45 and 0.6 µm) were investigated. To find killer defects and particle contamination, KLA, bitmap and emission microscopy techniques were used in fault isolation. Reactive ion etching (RIE) and chemical delayering, 155 Wright Etch, BN+ Etch and scanning electron microscope (SEM) were used for identification and inspection of defects. In addition, energy-dispersive X-ray microanalysis (EDX) was used to determine the composition of the particle or contamination. During failure analysis, seven kinds of killer defects and three killer particles were found in Flat ROM devices. The possible root causes, mechanisms and elimination solutions of these killer defects/particles were also discussed.


Author(s):  
C.C. Ooi ◽  
K.H. Siek ◽  
K.S. Sim

Abstract Focused ion beam system has been widely used as a critical failure analysis tool as microprocessor technology advances at a ramping speed. It has become an essential step in failure analysis to reveal physical defects post electrical fault isolation. In this highly competitive and challenging environment prevalent today, failure analysis throughput time is of utmost important. Therefore quick, efficient and reliable physical failure analysis technique is needed to avoid potential issues from becoming bigger. This paper will discuss the applications of FIB as a defect localization and root cause determination tool through the passive charge contrast technique and pattern FIB analysis.


Author(s):  
S.H. Goh ◽  
B.L. Yeoh ◽  
G.F. You ◽  
W.H. Hung ◽  
Jeffrey Lam ◽  
...  

Abstract Backside frequency mapping on modulating active in transistors is well established for defect localization on broken scan chains. Recent experiments have proven the existence of frequency signals from passive structures modulations. In this paper, we demonstrate the effectiveness of this technique on a 65 nm technology node device failure. A resistive leaky path leading to a functional failure which, otherwise cannot be isolated using dynamic emission microscopy, is localized in this work to guide follow on failure analysis.


Author(s):  
Bence Hevesi

Abstract In this paper, different failure analysis (FA) workflows are showed which combines different FA approaches for fast and efficient fault isolation and root cause analysis in system level products. Two case studies will be presented to show the importance of a well-adjusted failure analysis workflow.


2015 ◽  
Vol 2015 (1) ◽  
pp. 000469-000473 ◽  
Author(s):  
J. Gaudestad ◽  
A. Orozco ◽  
I. De Wolf ◽  
T. Wang ◽  
T. Webers ◽  
...  

In this paper we show an efficient workflow that combines Magnetic Field Imaging (MFI) and Dual Beam Plasma Focused Ion Beam (DB-PFIB) for fast and efficient Fault Isolation and root cause analysis in 2.5/3D devices. The work proves MFI is the best method for Electric Fault Isolation (EFI) of short failures in 2.5/3D Through Silicon Via (TSV) triple stacked devices in a true non-destructive way by imaging the current path. To confirm the failing locations and to do Physical Failure Analysis (PFA), a DB-PFIB system was used for cross sectioning and volume analysis of the TSV structures and high resolution imaging of the identified defects. With a DB-PFIB, the fault is exposed and analyzed without any sample prep artifacts seen in mechanical polishing or laser preparation techniques and done in a considerably shorter amount of time than that required when using a traditional Gallium Focused Ion Beam (FIB).


Sign in / Sign up

Export Citation Format

Share Document