scholarly journals ALTERATIONS IN ELECTRICAL RESISTIVITY OF SANDY SOIL IN CONTROLLED EXPERIMENT BY INFLITRATION OF STILLAGE

2019 ◽  
Vol 38 (1) ◽  
pp. 147-156
Author(s):  
Cesar Augusto MOREIRA ◽  
José Ricardo Melges BORTOLIN ◽  
Walter MALAGUTTI FILHO ◽  
João Carlos DOURADO

The sugar and alcohol sector represents one of the most profitable economic activities in Brazil, being ethanol one of the main products. Among the residues related to the production of ethanol, it is highlighted the stillage, a liquid substance generated in the approximate proportion of 13 liters for each liter of ethanol produced. This paper presents the results of a stillage infiltration experiment, in various proportions, through trenches in sandy soil, with the aim to evaluate possible alterations in electrical properties in the geological materials, in individual experiments, with 60L, 300L and 900L of effluent. The initial proportion was defined based on a standard stipulated by the Environmental Agency of the State of São Paulo, which considers the cation exchange capacity of the soil, while the other quantities were defined from ratios of 4 and 15 times higher than those defined by legislation. The experiment was monitored by means of electrical resistivity measurements by indirect means through the geophysical method of Electroresistivity. The data indicate the absence of alterations in electrical properties in the soil below the point of infiltration in the experiment for 60L of stillage. The data for infiltrations with 300L and 900L revealed a zone of low resistivity below the infiltration point, basically limited to the 1m layer of sandy soil and with tendency for lateral flow supported by the soil/rock interface. The results demonstrate that the infiltration of inorganic solutions, in a proportion inferior to the cation exchange capacity of the soil, does not perceptibly alter its electrical properties in studies using the geophysical method of Electro resistivity, whereas proportions that exceed natural absorption capacity are characterized by the geoelectric signature of low resistivity.

2018 ◽  
Vol 28 (1) ◽  
pp. 103-111 ◽  
Author(s):  
Krzysztof Gondek ◽  
Monika Mierzwa-Hersztek ◽  
Michał Kopeć ◽  
Jakub Sikora ◽  
Tomasz Głąb ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5730
Author(s):  
Tobias Björn Weisenberger ◽  
Heimir Ingimarsson ◽  
Gylfi Páll Hersir ◽  
Ólafur G. Flóvenz

Cation-exchange capacity (CEC) measurements are widely used to quantify the smectite content in altered rocks. Within this study, we measure the CEC of drill cuttings in four wells from three different high-temperature geothermal areas in Iceland. The CEC measurements in all four wells show similar depth/temperature related pattern, and when comparing the CEC with electrical resistivity logs, we could show that the low resistivity zone coincides with CEC values >5 meq/100 g. The measurements show, in general, an exponential decrease of the CEC with increasing depth. At the facies boundary between the mixed-layer clay and epidote-chlorite zone, the CEC reaches a steady state at about 5 meq/100 g and below that it only decreases slightly within a linear trend with increasing depth. The facies boundary overlaps with the transition where the electrical resistivity logs show an increase in resistivity. It is shown that the measured CEC can be related to the clay mineral alteration within the geothermal system and the CEC reflects the smectite component within the interstratified chlorite/smectite minerals for similar alteration degree. Furthermore, CEC was measured in seven core samples from different alteration zones that had previously been studied in detail with respect to petrophysical and conductivity properties. The results show a clear correlation between CEC and the iso-electrical point, which describes the value of the pore fluid conductivity where transition from surface conductivity to pore fluid conductivity occurs. The presented study shows that the CEC within hydrothermal altered basaltic systems mimics the expandable clay mineral alteration zones and coincides with electrical logs. The presented method can, therefore, be an easy tool to quantify alteration facies within geothermal exploration and drilling projects.


2015 ◽  
Vol 2 (1) ◽  
pp. 74-88
Author(s):  
Parlindungan Lumbanraja ◽  
Erwin Masrul Harahap

The research took place at the University of HKBP Nommensen, Faculty of Agriculture Research Greenhouse in Simalingkar, Medan, Indonesia. It hypothesized that the application of manure as a single factor could increase the soil water holding capacity and soil cation exchange capacity. Research designed with Complete Randomize Design, the treatment replicated by four times. Every parameter that affected significantly will be continued analyzed with Duncan’s Multiple Range Test. For observation had made by measures of soil water holding capacity and soil cation exchange capacity. The concluding of the research can be explained that the effects of manure application on sandy soil after 30 days of incubation at the rate of application equal with 20 t/ha have significantly increased soil water holding capacity only at 72 hours after saturation. The Effects of manure application on sandy soil after 15 as well as 30 days of incubation at all rates of application have not significantly affected cation exchange capacity.


1968 ◽  
Vol 8 (02) ◽  
pp. 107-122 ◽  
Author(s):  
M.H. Waxman ◽  
L.J.M. Smits

ABSTRACT A simple physical model was used to develop an equation that relates the electrical conductivity of a water-saturated shaly sand to the water conductivity and the cation- exchange capacity per unit pore volume of the rock. This equation fits both the experimental data of Hill and Milburn and data obtained recently on selected shaly sands with a wide range of cation-exchange capacities. This model was extended to cases where both oil and water are present in the shaly sand. This results in an additional expression, relating the resistivity ratio to water saturation, water conductivity and cation-exchange capacity per unit pore volume. The effect of shale content on the resistivity index- water saturation function is demonstrated by several numerical examples. INTRODUCTION A principal aim of well logging is to provide quantitative information concerning porosity and oil saturation of the permeable formations penetrated by the borehole. For clean sands, the relationships between measured physical quantities and porosity or saturation are well known. However, the presence of clay minerals greatly complicates log interpretation, particularly the electrical resistivity and SP logs, and considerably affects evaluation of hydrocarbon-bearing formations. The conductance and electrochemical behavior of shaly sands and their relation to log interpretation have been studied by many workers. Wyllie and Lynch reviewed this work in some detail. Virtually all laboratory measurements of electrical resistivity and electrochemical potential of shaly sands published to date are the work of Hill and Milburn.


Author(s):  
Mohammad Izzat Shaffiq Azmi ◽  
◽  
Ahmad Khairul Abd Malik ◽  
Aziman Madun ◽  
Faizal Pakir ◽  
...  

Electrical Resistivity Tomography (ERT) is a method used for subsurface profiling in soil to characterize soil thickness, fracture zones, soil saturation, salinity and groundwater based on the electrical resistivity value (ERV). There are multiple factors that influence the electrical resistivity value, such as the porosity, degree of saturation, mineralogy, density, cation exchange capacity (CEC), and water resistivity. For this study, the effect of CEC towards resistivity value is studied via controlling the mineralogy factor, saturation, porosity and water resistivity. Thus, via understanding the CEC factor able to relate the resistivity and mineralogy of soil. This study is using a few common minerals in soil and rock, such as kaolinite, montmorillonite, illite, quartz, mica, and feldspar. The particle sizes of all tested minerals were passing 0.063mm sieve. The basic index properties of minerals such as particle size distribution, specific gravity, and Atterberg limit were tested. The instruments of Terrameter LS2 and resistivity box were used to determine the resistivity value of minerals. The Atomic Absorption Spectroscopy (AAS) machine was used to analyze the CEC of minerals via dilute with the ammonium acetate solution. The porosity and degree of saturation of minerals mixed with distill water were controlled between the range of 0.5 to 0.6 and 20% to 100%. The CEC of each mineral has different value, where the lowest and the highest minerals CEC in this study were Kaolinite and Montmorillonite at 1 and 70, respectively. The electrical resistivity values decrease with the increasing of CEC value and degree of saturation. The mineral that has higher CEC indicates lower resistivity value. Meanwhile, via increasing the degree of saturation of minerals were decrease its resistivity values.


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Mardi Wibowo

Since year 1977 until 2005, PT. ANTAM has been exploited nickel ore resources at Gebe Island – Center ofHalmahera District – North Maluku Province. Mining activity, beside give economically advantages also causedegradation of environment quality espicially land quality. Therefore, it need evaluation activity for change ofland quality at Gebe Island after mining activity.From chemical rehabilitation aspect, post mining land and rehabilitation land indacate very lack and lackfertility (base saturated 45,87 – 99,6%; cation exchange capacity 9,43 – 12,43%; Organic Carbon 1,12 –2,31%). From availability of nutrirnt element aspect, post mining land and rehabilitation land indicate verylack and lack fertility (nitrogen 0,1 – 1,19%). Base on that data, it can be concluded that land reclamationactivity not yet achieve standart condition of chemical land.Key words : land quality, post mining lan


Author(s):  
Geraldo R. Zuba Junio ◽  
Regynaldo A. Sampaio ◽  
Altina L. Nascimento ◽  
Luiz A. Fernandes ◽  
Natália N. de Lima ◽  
...  

ABSTRACTThis study aimed to evaluate the chemical attributes of an Inceptisol cultivated with castor bean (Ricinus communis L.), variety ‘BRS Energia’, fertilized with sewage sludge compost and calcium (Ca) and magnesium (Mg) silicate. The experiment was conducted at the ICA/UFMG, in a randomized block design, using a 2 x 4 factorial scheme with three replicates, and the treatments consisted of two doses of Ca-Mg silicate (0 and 1 t ha-1) and four doses of sewage sludge compost (0, 23.81, 47.62 and 71.43 t ha-1, on dry basis). Soil organic matter (OM), pH, sum of bases (SB), effective cation exchange capacity (CEC(t)), total cation exchange capacity (CEC(T)), base saturation (V%) and potential acidity (H + Al) were evaluated. There were no significant interactions between doses of sewage sludge compost and doses of Ca-Mg silicate on soil attributes, and no effect of silicate fertilization on these attributes. However, fertilization with sewage sludge compost promoted reduction in pH and increase in H + Al, OM and CEC. The dose of 71.43 t ha-1 of sewage sludge compost promoted the best soil chemical conditions.


Sign in / Sign up

Export Citation Format

Share Document