Antibacterial Activity of Rosmarinus officinalis and Lavandula angustifolia Essential Oils Against Selected Poultry Pathogenic Bacteria

Author(s):  
F.Moukhfi N.Chadli

Abstract- Poultry is the host of many species of bacteria and the intestine is the privileged place of their colonization and their persistence. These bacteria are the cause of several cases of food poisoning in humans through the consumption of eggs or soiled chicken meat. In addition, these bacteria develop resistance to antibiotics that are adjusted to poultry feed as growth promoters. Essential oils are considered as important secondary metabolites for plant defense by their antimicrobial and antioxidant properties. These essential oils may be considered as a source of natural antimicrobials for the conservation of poultry food. The aim of our study is to isolate and identify bacterial strains isolated from poultry and to determine the antibacterial and antioxidant activities of Rosmarinus officinalis and Lavandula angustifolia essential oils on these bacterial strains.Essential oils of Moroccan Rosmarinus officinalis and Lavandula angustifolia were extracted by hydrodistillation. The identification of their chemical composition are performed by gas chromatography-mass spectrometry. Antimicrobial activity of extracted essential oils against Staphylococcus aureus, Clostridium perfringens, Escherichia coli and Salmonella entiritidis was evaluated by aromatogram test and Microdilution in a liquid medium. The identification of strains are performed by several test: Gram staining, Kligler test, Catalase test, test Mobility and Api Gallery 20E. The results show that essential oils tested have a considerable antibacterial activity against all isolated bacterial strains. Keywords: Poultry feed, Essential oils, Bacterial strains, Antibiotic resistance, Antimicrobial activity.

2018 ◽  
Vol 23 ◽  
pp. 2515690X1775131 ◽  
Author(s):  
Farhad Sharafati Chaleshtori ◽  
Mohamad Saholi ◽  
Reza Sharafati Chaleshtori

This research was aimed at investigating the antioxidant and antibacterial activity of Bunium persicum, Eucalyptus globulus, and rose water on multidrug-resistant Listeria species. The antibiotic resistance of Listeria spp obtained from seafood samples were determined by the Kirby-Bauer method. The antioxidant and antibacterial activity of the essential oils and extracts were evaluated using ferric reducing antioxidant power and microdilution methods, respectively. A total 2 samples (1.88%) were positive for Listeria spp. L monocytogenes was found to be resistant to ampicillin, amoxicillin/clavulanic acid, penicillin, vancomycin, and kanamycin. B persicum essential oil showed the greatest antioxidant activity (248.56 ± 1.09 µM Fe2+/g). The E globulus essential oil showed consistently strong antimicrobial activity against L monocytogenes and L grayi, while rose water showed no antimicrobial activity against any of the tested bacterial strains. The results showed that after adding the B persicum and E globulus essential oils to bacteria, the cell components’ release increased significantly.


2020 ◽  
Vol 17 (36) ◽  
pp. 18-31
Author(s):  
Ahmad khadem HACHIM ◽  
Rashid Rahim HATEET ◽  
Tawfik Muhammad MUHSIN

The purpose of the present work aimed at exploring the potential biochemical components and biological activities of an organic extract of the white truffle Tirmania nivea collected from the Iraqi desert, then test the organic extract against the Cytotoxicity on Human Larynx carcinoma cells and selected strains of pathogenic bacteria. Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry GC/MSS were used to analyze mycochemical compositions. The antibacterial activity and Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) was investigated using a disk diffusion agar method. The truffle extract's cytotoxicity effect against the larynx cell line (Hep-2) was assessed by the MTT assay (in vitro). FTIR results provided the presence of phenol, carboxylic acid, and alkane's functional group, The GC-MS analysis of T. nivea disclose the existence of nineteen compounds that can contribute to the pharmaceutical properties of the truffle. As for antibacterial activity result, A growth inhibition activity of truffle extract at (18-40 mm inhibition zones) against the tested pathogenic bacterial strains was detected, which minimum inhibitory concentration values ranged from 3.12 to 6.25 mg/mL for Escherichia coli (ATCC 25922) and Staphylococcus aureus (ATCC 25923) Respectively. The results of cytotoxicity shown that the organic truffle extract exhibited a high inhibitory rate (52.685%) against cell line (Hep-2) at a concentration of 1.56 ?g/mL. In this work, the results showed that the organic extracts of T. nivea are very promising as cancer cytotoxicity and antibacterial agent for future medical applications.


Author(s):  
PURIT PATTANAPANIT ◽  
SUNISA MITHONGLANG ◽  
SUNITA MITHONGLANG ◽  
SURACHAI TECHAOEI

Objective: The objective of this study was to evaluate the antimicrobial activity of volatile oils from aromatic plants against pathogenic bacteria.Methods: Thai aromatic plants such as Pogostemon cablin (Blanco) Benth (Patchouli oil), Cymbopogon nardus Rendle (Citronella grass oil), Pelargoniumroseum (Geranium oil), Syzygium aromaticum (L.) Merrill and Perry (clove oil), Cinnamomum spp.(cinnamon oil), and Cymbopogon citratus (DC.) Stapf.(lemongrass oil) were selected. Essential oils were obtained by water distillation and were stored at 4°C until use. Five human pathogenic bacteria wereobtained from Thai traditional Medicine College, Rajamangala University of Technology, Staphylococcus epidermidis, Escherichia coli, Staphylococcusaureus, methicillin-resistant S. aureus (MRSA), and Pseudomonas aeruginosa. The antibacterial activity of volatile oils was determined by disc-diffusionassay. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of each essential oil were determined.Results: Our study showed that 10% of essential oil from Cinnamomum spp. was the most potential against S. aureus, MRSA, and E. coli when assayedby disc-diffusion method with inhibition zones ranging from 37.66±0.57 to 45.33±1.15 mm and from 29.33±0.57 to 36.00±1.00 for lemongrass oilwith MIC and MBC of 1.25%.Conclusion: From this study, it can be concluded that some essential oils have potential antibacterial activity. The present investigation providessupport to the antibacterial properties of essential oils and will be applied to health-care product as aroma antibacterial products.


2006 ◽  
Vol 1 (5) ◽  
pp. 1934578X0600100
Author(s):  
Andreza Maria L. Pires ◽  
Maria Rose Jane R. Albuquerque ◽  
Edson P. Nunes ◽  
Vânia M. M. Melo ◽  
Edilberto R. Silveira ◽  
...  

The essential oils of Blainvellea rhomboidea (Asteraceae) were obtained by hydrodistillation and analyzed by GC/MS and GC/FID. Initially, the essential oil from the aerial parts was investigated. From the 18 identified components, 5-indanol (14.5%) followed by p-cymen-8-ol (10.1%), β-caryophyllene (9.6%), caryophyllene oxide (9.6%), limonene (8.6%), terpinolene (7.8%), and spathulenol (7.7%) were the major constituents. The oil was tested against seven bacterial strains and the results showed significant antimicrobial activity. As a consequence, the essential oils from leaves and from flowers were analyzed separately. The major constituents of the leaf oil were terpinolene (21.2%), β-caryophyllene (19.2%), spathulenol (9.1%), caryophyllene oxide (7.4%), and bicyclogermacrene (7.1%), while the oil of the flowers contained terpinolene (28.1%), 5-indanol (16.3%), p-cymen-8-ol (15.3%) and limonene (14.7%) as prevalent compounds. The oils were tested against the same bacterial strains and the flower oil was the more active. These results indicated that the components of the essential oil from flowers seem to be responsible for the activity.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Safia Boulechfar ◽  
Amar Zellagui ◽  
Meltem Asan-Ozusaglam ◽  
Chawki Bensouici ◽  
Ramazan Erenler ◽  
...  

Abstract This study aims to investigate the chemical composition, antioxidant, and antimicrobial activity of two essential oils (EOs) from Algerian propolis. The volatile constituents were analyzed by gas chromatography-mass spectrometry. Fifty components were identified from the oils. The major components were found to be: cedrol (17.0%), β-eudesmol (7.7%), and α-eudesmol (6.7%) in EO of propolis from Oum El Bouaghi (EOPO) whilst α-pinene (56.1%), cis-verbenol (6.0%), and cyclohexene,3-acetoxy-4-(1-hydroxy-1-methylethyl)-1-methyl (4.4%) in EO of propolis from Batna (EOPB). The antioxidant properties of EOPO and EOPB were determined using 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS•+) and cupric reducing antioxidant capacity (CUPRAC assays), respectively. Both EOs had more cupric ion reducing ability than scavenging ABTS•+ radicals. The antimicrobial potential of the two EOs against eight pathogens was assayed by the agar diffusion method and the mode of action was determined by microdilution assay. The results revealed that EOPB was bactericidal for all tested pathogenic bacteria and fungicidal for Candida albicans ATCC 10231, whereas, EOPO showed bacteriostatic effect against Escherichia coli O157:H7 and Pseudomonas aeruginosa ATCC27853 and fungistatic effect against C. albicans ATCC 10231. Thus, the obtained results suggest the important use of propolis EOs as preservative agents.


2019 ◽  
Vol 9 (04) ◽  
pp. 682-685
Author(s):  
Taha H. Alnasrawi ◽  
Zahraa A. Althabet ◽  
Ghufran S. Salih ◽  
Mohammad J. Al-Jassani

Nanoparticles include multiple metal oxides such as yttrium, copper, nickel, zinc, iron, and silver that have antimicrobial activity. The present work evaluates the antibacterial activity of some nanoparticles (NPs)against various pathogenic bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia and Staphylococcus aureus). Antimicrobial activity of NPs was accomplished by the mean of disk diffusion assay using dilutions of (200, 100, 50, 25, and 12.5) and the MIC and MBC of each isolate is determined. NPs shows no antibacterial activity against tested bacteria. It is highly recommended using NPs as an economical alternative antibacterial agent, especially in treating ectopic infections but with high concentration since low concentration gives no result without taking the risk of developing resistant bacterial strains as with antibiotics.


2021 ◽  
Vol 14 (2) ◽  
pp. 134 ◽  
Author(s):  
Stefania Garzoli ◽  
Valentina Laghezza Masci ◽  
Valentina Caradonna ◽  
Antonio Tiezzi ◽  
Pierluigi Giacomello ◽  
...  

In this study, the chemical composition of the vapor and liquid phase of Pinus cembra L., Pinus mugo Turra, Picea abies L., and Abies Alba M. needles essential oils (EOs) was investigated by Headspace-Gas Chromatography/Mass Spectrometry (HS-GC/MS). In the examined EOs, a total of twenty-eight components were identified, most of which belong to the monoterpenes family. α-Pinene (16.6–44.0%), β-pinene (7.5–44.7%), limonene (9.5–32.5%), and γ-terpinene (0.3–19.7%) were the most abundant components of the liquid phase. Such major compounds were also detected in the vapor phase of all EOs, and α-pinene reached higher relative percentages than in the liquid phase. Then, both the liquid and vapor phases were evaluated in terms of antibacterial activity against three Gram-negative bacteria (Escherichia coli, Pseudomonas fluorescens, and Acinetobacter bohemicus) and two Gram-positive bacteria (Kocuria marina and Bacillus cereus) using a microwell dilution assay, disc diffusion assay, and vapor phase test. The lowest Minimum Inhibitory Concentration (MIC) (13.28 mg/mL) and Minimal Bactericidal Concentration (MBC) (26.56 mg/mL) values, which correspond to the highest antibacterial activities, were reported for P. abies EO against A. bohemicus and for A. alba EO against A. bohemicus and B. cereus. The vapor phase of all the tested EOs was more active than liquid phase, showing the inhibition halos from 41.00 ± 10.15 mm to 80.00 ± 0.00 mm for three bacterial strains (A. bohemicus, K. marina, and B. cereus). Furthermore, antioxidant activities were also investigated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis (3- ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) assays, and a concentration-dependent antioxidant capacity for all EOs was found. P. mugo EO showed the best antioxidant activity than the other Pinaceae EOs. The four Pinaceae EOs could be further investigated for their promising antibacterial and antioxidant properties, and, in particular, α-pinene seems to have interesting possibilities for use as a novel natural antibacterial agent.


2018 ◽  
Vol 13 (3) ◽  
pp. 1934578X1801300 ◽  
Author(s):  
Marina Milenković ◽  
Jelena Stošović ◽  
Violeta Slavkovska

The subject of the study was the investigation of the chemical composition and antimicrobial activity of the essential oils (EOs) isolated from Calamintha sylvatica, C. vardarensis, C. nepeta and C. glandulosa, as well as their antibacterial activity in combination with antibiotics. The quantitative and qualitative analysis of EOs was performed using the GC/FID and GC/MS methods. The antimicrobial activity of EOs against six standard bacterial strains and one strain of yeast was tested using the broth microdilution method, while the antimicrobial activity of a combination of essential oils and gentamicin/ciprofloxacin was tested by the checkerboard method. The dominant components (> 10%) of the essential oils were: cis-piperitone epoxide and menthone ( C. sylvatica), pulegone and menthone ( C. vardarensis), pulegone and piperitenone ( C. nepeta), pulegone, piperitenone, menthone and piperitone ( C. glandulosa). EOs did not exhibit significant antimicrobial activity except the essential oil of C. vardarensis which was selectively active against Staphylococcus aureus (MIC - 21.25 μg/mL). The overall effect of essential oil-antibiotic combinations varied from synergistic (FICI ≤ 0.5) to antagonistic (FICI ≥ 2) depending on the bacterial strain tested.


2012 ◽  
Vol 2 (3) ◽  
pp. 192-200 ◽  
Author(s):  
Haris Nikšić ◽  
Elvira Kovač Bešović ◽  
Elma Makarević ◽  
Kemal Durić

Introduction: Present study describes the antimicrobial activity and free radical scavenging capacity (RSC) of essential oil from Mentha longifolia (L.) Huds. Aim of this study to investigate the quality, antimicrobial andantioxidant activity of wild species Mentha longifolia essential oil from Bosnia and Herzegovina.Methods: The chemical profi le of essential oil was evaluated by the means of gas chromatography-mass spectrometry (GC-MS) and thin-layer chromatography (TLC). Antimicrobial activity was tested against 6bacterial strains. RSC was assessed by measuring the scavenging activity of essential oils on 2,2- diphenyl-1-picrylhydrazil (DPPH).Results: The main constituents of the essential oil of M. longifoliae folium were oxygenated monoterpenes,piperitone oxide (63.58%) and 1,8-cineole (12.03%). Essential oil exhibited very strong antibacterial activity.The most important antibacterial activity essential oil was expressed on Gram negative strains: Escherichia coli, Pseudomonas aerginosa and Salmonella enterica. subsp.enterica serotype ABONY. Antioxidant activity was evaluated as a RSC. Investigated essential oil was able to reduce DPPH radicals into the neutral DPPHH form (IC50=10.5 μg/ml) and this activity was dose –dependent.Conclusion: The study revealed signifi cant antimicrobial activity of the investigated essential oil. The examined oil exhibited high RSC, which was found to be in correlation to the content of mainly monoterpeneketones and aldehydes. These results indicate that essential oils could serve as safe antioxidant and antiseptic supplements in pharmaceuticals.


Sign in / Sign up

Export Citation Format

Share Document