scholarly journals CHALLENGES IN FACE RECOGNITION TECHNIQUE

2021 ◽  
Vol 23 (07) ◽  
pp. 1201-1204
Author(s):  
Milan. M. P ◽  

Face detection is an application that is able of detecting, track, and recognizing human faces from an angle or video captured by a camera. A lot of advances have been made up in the domain of face recognition for security, identification, and appearance purpose, but still, difficult to able to beat humans alike accuracy. There are various problems in human facial presence such as; lighting conditions, image noise, scale, presentation, etc. Unconstrained face detection remains a difficult problem due to intra-class variations acquired by occlusion, disguise, capricious orientations, facial expressions, age variations…etc. The detection rate of face recognition algorithms is actually low in these conditions. With the popularity of AI in recent years, a mass number of enterprises deployed AI algorithms in absolute life settings. it is complete that face patterns observed by robots depend generally on variations such as pose, light environment, location.


2013 ◽  
Vol 753-755 ◽  
pp. 2941-2944
Author(s):  
Ming Hui Zhang ◽  
Yao Yu Zhang

Seeing that human face features are unique, an increasing number of face recognition algorithms on existing ATM are proposed. Since face detection is a primary link of face recognition, our system adopts AdaBoost algorithm which is based on face detection. Experiment results demonstrated that the computing time of face detection using this algorithm is about 70ms, and the single and multiple human faces can be effectively measured under well environment, which meets the demand of the system.



2018 ◽  
Author(s):  
Solly Aryza

It is very challenging to recognize a face from an image due to the wide variety of face and the uncertain of face position. The research on detecting human faces in color image and in video sequence has been attracted with more and more people. In this paper, we propose a novel face detection method that achieves better detection rates. The new face detection algorithms based on skin color model in YCgCr chrominance space. Firstly, we build a skin Gaussian model in Cg-Cr color space. Secondly, a calculation of correlation coefficient is performed between the given template and the candidates. Experimental results demonstrate that our system has achieved high detection rates and low false positives over a wide range of facial variations in color, position and varying lighting conditions.



Author(s):  
Pawel T. Puslecki

The aim of this chapter is the overall and comprehensive description of the machine face processing issue and presentation of its usefulness in security and forensic applications. The chapter overviews the methods of face processing as the field deriving from various disciplines. After a brief introduction to the field, the conclusions concerning human processing of faces that have been drawn by the psychology researchers and neuroscientists are described. Then the most important tasks related to the computer facial processing are shown: face detection, face recognition and processing of facial features, and the main strategies as well as the methods applied in the related fields are presented. Finally, the applications of digital biometrical processing of human faces are presented.



Author(s):  
LIANG-HUA CHEN ◽  
SHAO-HUA DENG ◽  
HONG-YUAN LIAO

This paper proposes a complete procedure for the extraction and recognition of human faces in complex scenes. The morphology-based face detection algorithm can locate multiple faces oriented in any direction. The recognition algorithm is based on the minimum classification error (MCE) criterion. In our work, the minimum classification error formulation is incorporated into a multilayer perceptron neural network. Experimental results show that our system is robust to noisy images and complex background.



Author(s):  
THOMAS S. HUANG ◽  
LI-AN TANG

This paper describes some issues in building a 3-D human face modeling system which mainly consists of three parts: • Modeling human faces; • Analyzing facial motions; • Synthesizing facial expressions. A variety of techniques developed for this system are described in detail in this paper. Some preliminary results of applying this system to computer animation, video sequence compression and human face recognition are also shown.



Author(s):  
Apurva Yawalikar ◽  
U. W. Hore

Face detection is a computer technology being used in a variety of applications that identifies human faces in digital images. Face detection also refers to the psychological process by which humans locate and attend to faces in a visual scene. Face detection can be regarded as a specific case of object-class detection. In object-class detection, the task is to find the locations and sizes of all objects in an image that belong to a given. As per the various face detection system seen various work done onto the detection with various way. In existing this are get evaluate with the HOG with SVM, which will help us to get the exact value so that it is necessary to implement the system which will more effective and advance. As per the face detection seen there are various face detection systems are implemented. Determining face is easy but recognition is quite typical so that we are proposed machine learning based face recognition with SVM which helps to determine and detect the faces So the proposed system will get integrated with highly efficient and effective SVM model for face recognition. The proposed methodology will help us to implement the face based security implementation in any security system like door lock, mobile screen lock etc.



Author(s):  
Mohammad Jahangir Alam ◽  
Tanjia Chowdhury ◽  
Md. Shahzahan Ali

<p>We can identify human faces using a web Camera which is known as Face Detection.  This is a very effective technique in computer technology. There are used different types of attendance systems such as log in with the password, punch card, fingerprint, etc. In this research, we have introduced a facial recognition type of biometric system that can identify a specific face by analyzing and comparing patterns of a digital image.  This system is the latest login system based on face detection. Primarily, the device captures the face images and stores the captured images into the specific path of the computer relating the information into a database. When any body tries to enter into any room or premises through this login system, the system captures the image of that particular person and matches the image with the stored image. If this image matches with the stored image then the system allows the person to enter the room or premises, otherwise the system denies entry. This face recognition login system is very effective, reliable and secured. This research has used the Viola and Jones algorithm for face detection and ORB for image matching in face recognition and Java, MySql, OpenCV, and iReport are used for implementation.</p>



Author(s):  
Ms. Monika Soni

To prevent and identifying the theft problem, smart car is an ultimate solution. When a person enters into car, automatically takes the photos of driver .Using Principal Component analysis algorithm, checks the photos of driver already stored in the database and decide the person is authorized or unauthorized.   If the person is authorized, the person can access the vehicle. When the person is unauthorized. Using GSM and MMS modem, send messages to the user’s mobile number and then the car speed gets slow down. The ignition unit of the car can stops and the door cannot open. Using GPS, the location of the car and thief can easily identified using algorithmic approach. Any facial expressions and background conditions can changes in images, detection cannot takes place. To avoid this problem, face recognition and face detection algorithm can be used.



Author(s):  
M. Gunther ◽  
P. Hu ◽  
C. Herrmann ◽  
C. H. Chan ◽  
M. Jiang ◽  
...  


Author(s):  
Amir Nobahar Sadeghi Nam

Face detection is one of the challenging problems in the image processing, as a main part of automatic face recognition. Employing the color and image segmentation procedures, a simple and effective algorithm is presented to detect human faces on the input image. To evaluate the performance, the results of the proposed methodology is compared with ViolaJones face detection method.



Sign in / Sign up

Export Citation Format

Share Document