scholarly journals In Silico prediction and Comparative Modeling of proteins in Creeping Fig (Ficus pumila) plant

2021 ◽  
Vol 23 (08) ◽  
pp. 898-905
Author(s):  
P. Revathi ◽  
◽  
K. Nirubama ◽  
G. Thamotharan ◽  
M. Beutline Malgija ◽  
...  

In the present study, the Ficus pumila have taken to analyze the proteins by their preliminary characters from the database and predicted vital role of different sequences. The F. pumila (Creeping fig) is a prostrate/climbing shrub, experiments proved various active phytochemicals and antioxidant, antimicrobial, antimutagenic, analgesic, anti-inflammatory, antiproliferative, hypoglycemic, hypolipidemic, antihyperprolactinemic, anticholinesterase, nephroprotective properties. In addition to all metabolites, it also constitutes specific proteins that were evaluated through insilico homology modeling. Though it is considered as a poisonous weed, the protein present in this plant is evaluated by physicochemical, phylogeny and amino acid proportions by protparam, Swiss model, SOPMA, Clustal omega tools to describe its structural features and to understand molecular function. The computed theoretical isoelectric point (pI) found to be more than 7 indicates basic nature of proteins. The aliphatic index ranges 67-113 indicates thermal stability of proteins. The predicted Grand average hydropathy(GRAVY) shows possibilities of enhanced interaction of these proteins with water by lowest value. Functional analysis of these proteins was performed by SOSUI server which predicted transmembrane helix and solubility. Secondary structure analysis was carried out by SOPMA revealed that Alpha helix and random coil dominated followed by extended strand, and beta turns among secondary structure elements. The modelling of three-dimensional structure of proteins was performed by Swiss model. The model was validated using protein structure checking tool- VADAR. Particularly, NAD(P)H –quinoneoxidoreductase and Glyceraldehyde-3-phosphate dehydrogenase structures were analysed by phylogenetic analysis to trace relationship and reported. The results suggesting its possible role in cellular and metabolic functions.

Author(s):  
Roma Chandra

Protein structure prediction is one of the important goals in the area of bioinformatics and biotechnology. Prediction methods include structure prediction of both secondary and tertiary structures of protein. Protein secondary structure prediction infers knowledge related to presence of helixes, sheets and coils in a polypeptide chain whereas protein tertiary structure prediction infers knowledge related to three dimensional structures of proteins. Protein secondary structures represent the possible motifs or regular expressions represented as patterns that are predicted from primary protein sequence in the form of alpha helix, betastr and and coils. The secondary structure prediction is useful as it infers information related to the structure and function of unknown protein sequence. There are various secondary structure prediction methods used to predict about helixes, sheets and coils. Based on these methods there are various prediction tools under study. This study includes prediction of hemoglobin using various tools. The results produced inferred knowledge with reference to percentage of amino acids participating to produce helices, sheets and coils. PHD and DSC produced the best of the results out of all the tools used.


2020 ◽  
Vol 13 (636) ◽  
pp. eaaz5599 ◽  
Author(s):  
Kelan Chen ◽  
Richard W. Birkinshaw ◽  
Alexandra D. Gurzau ◽  
Iromi Wanigasuriya ◽  
Ruoyun Wang ◽  
...  

Structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1) is an epigenetic regulator in which polymorphisms cause the human developmental disorder, Bosma arhinia micropthalmia syndrome, and the degenerative disease, facioscapulohumeral muscular dystrophy. SMCHD1 is considered a noncanonical SMC family member because its hinge domain is C-terminal, because it homodimerizes rather than heterodimerizes, and because SMCHD1 contains a GHKL-type, rather than an ABC-type ATPase domain at its N terminus. The hinge domain has been previously implicated in chromatin association; however, the underlying mechanism involved and the basis for SMCHD1 homodimerization are unclear. Here, we used x-ray crystallography to solve the three-dimensional structure of the Smchd1 hinge domain. Together with structure-guided mutagenesis, we defined structural features of the hinge domain that participated in homodimerization and nucleic acid binding, and we identified a functional hotspot required for chromatin localization in cells. This structure provides a template for interpreting the mechanism by which patient polymorphisms within the SMCHD1 hinge domain could compromise function and lead to facioscapulohumeral muscular dystrophy.


2015 ◽  
Vol 13 ◽  
pp. 34
Author(s):  
J. K.S. NASCIMENTO et al

Teaching biochemistry in higher education is increasingly becoming a challenge. It is notoriously difficult for students to assimilate the topic; in addition there are many complaints about the complexity of subjects and a lack of integration with the day-to-day. A recurrent problem in undergraduate courses is the absence of teaching practice in specific disciplines. This work aimed to stimulate students in the biological sciences course who were enrolled in the discipline of MOLECULAR DIVERSITY (MD), to create hypothetical classes focused on basic education highlighting the proteins topic. The methodology was applied in a class that contained 35 students. Seven groups were formed, and each group chose a protein to be used as a source of study for elementary school classes. A lesson plan was created focusing on the methodology that the group would use to manage a class. The class was to be presented orally. Students were induced to be creative and incorporate a teacher figure, and to propose teaching methodologies for research using the CTS approach (Science, Technology and Society). Each group presented a three-dimensional structure of the protein they had chosen, explained their structural features and functions and how they would develop the theme for a class of basic education, and what kind of methodology they would use for this purpose. At the end of the presentations, a questionnaire was given to students in order to evaluate the effectiveness of the methodology in the teaching-learning process. The activity improved the teacher’s training and developed skills and abilities, such as creativity, didactical planning, teaching ability, development of educational models and the use of new technologies. The methodology used in this work was extremely important to the training of future teachers, who were able to better understand the content covered in the discipline and relate it to day-to-day life.


2018 ◽  
Author(s):  
David J Winter ◽  
Austen RD Ganley ◽  
Carolyn A Young ◽  
Ivan Liachko ◽  
Christopher L Schardl ◽  
...  

AbstractStructural features of genomes, including the three-dimensional arrangement of DNA in the nucleus, are increasingly seen as key contributors to the regulation of gene expression. However, studies on how genome structure and nuclear organization influence transcription have so far been limited to a handful of model species. This narrow focus limits our ability to draw general conclusions about the ways in which three-dimensional structures are encoded, and to integrate information from three-dimensional data to address a broader gamut of biological questions. Here, we generate a complete and gapless genome sequence for the filamentous fungus,Epichloë festucae. Coupling it with RNAseq and HiC data, we investigate how the structure of the genome contributes to the suite of transcriptional changes that anEpichloëspecies needs to maintain symbiotic relationships with its grass host. Our results reveal a unique “patchwork” genome, in which repeat-rich blocks of DNA with discrete boundaries are interspersed by gene-rich sequences. In contrast to other species, the three-dimensional structure of the genome is anchored by these repeat blocks, which act to isolate transcription in neighbouring gene-rich regions. Genes that are differentially expressed in planta are enriched near the boundaries of these repeat-rich blocks, suggesting that their three-dimensional orientation partly encodes and regulates the symbiotic relationship formed by this organism.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
A.E. Naas ◽  
A.K. MacKenzie ◽  
B. Dalhus ◽  
V.G.H. Eijsink ◽  
P.B. Pope

Abstract Previous gene-centric analysis of a cow rumen metagenome revealed the first potentially cellulolytic polysaccharide utilization locus, of which the main catalytic enzyme (AC2aCel5A) was identified as a glycoside hydrolase (GH) family 5 endo-cellulase. Here we present the 1.8 Å three-dimensional structure of AC2aCel5A and characterization of its enzymatic activities. The enzyme possesses the archetypical (β/α)8-barrel found throughout the GH5 family and contains the two strictly conserved catalytic glutamates located at the C-terminal ends of β-strands 4 and 7. The enzyme is active on insoluble cellulose and acts exclusively on linear β-(1,4)-linked glucans. Co-crystallization of a catalytically inactive mutant with substrate yielded a 2.4 Å structure showing cellotriose bound in the −3 to −1 subsites. Additional electron density was observed between Trp178 and Trp254, two residues that form a hydrophobic “clamp”, potentially interacting with sugars at the +1 and +2 subsites. The enzyme’s active-site cleft was narrower compared to the closest structural relatives, which in contrast to AC2aCel5A, are also active on xylans, mannans and/or xyloglucans. Interestingly, the structure and function of this enzyme seem adapted to less-substituted substrates such as cellulose, presumably due to the insufficient space to accommodate the side-chains of branched glucans in the active-site cleft.


2012 ◽  
Vol 40 (5) ◽  
pp. 955-962 ◽  
Author(s):  
Nathalie Sibille ◽  
Pau Bernadó

In recent years, IDPs (intrinsically disordered proteins) have emerged as pivotal actors in biology. Despite IDPs being present in all kingdoms of life, they are more abundant in eukaryotes where they are involved in the vast majority of regulation and signalling processes. The realization that, in some cases, functional states of proteins were partly or fully disordered was in contradiction to the traditional view where a well defined three-dimensional structure was required for activity. Several experimental evidences indicate, however, that structural features in IDPs such as transient secondary-structural elements and overall dimensions are crucial to their function. NMR has been the main tool to study IDP structure by probing conformational preferences at residue level. Additionally, SAXS (small-angle X-ray scattering) has the capacity to report on the three-dimensional space sampled by disordered states and therefore complements the local information provided by NMR. The present review describes how the synergy between NMR and SAXS can be exploited to obtain more detailed structural and dynamic models of IDPs in solution. These combined strategies, embedded into computational approaches, promise the elucidation of the structure–function properties of this important, but elusive, family of biomolecules.


2020 ◽  
Vol 89 (1) ◽  
pp. 695-715
Author(s):  
Eveline S. Litscher ◽  
Paul M. Wassarman

The zona pellucida (ZP) is an extracellular matrix that surrounds all mammalian oocytes, eggs, and early embryos and plays vital roles during oogenesis, fertilization, and preimplantation development. The ZP is composed of three or four glycosylated proteins, ZP1–4, that are synthesized, processed, secreted, and assembled into long, cross-linked fibrils by growing oocytes. ZP proteins have an immunoglobulin-like three-dimensional structure and a ZP domain that consists of two subdomains, ZP-N and ZP-C, with ZP-N of ZP2 and ZP3 required for fibril assembly. A ZP2–ZP3 dimer is located periodically along ZP fibrils that are cross-linked by ZP1, a protein with a proline-rich N terminus. Fibrils in the inner and outer regions of the ZP are oriented perpendicular and parallel to the oolemma, respectively, giving the ZP a multilayered appearance. Upon fertilization of eggs, modification of ZP2 and ZP3 results in changes in the ZP's physical and biological properties that have important consequences. Certain structural features of ZP proteins suggest that they may be amyloid-like proteins.


Sign in / Sign up

Export Citation Format

Share Document