scholarly journals Thermal Comfort of the Environment with Internet of Things, Big Data and Machine Learning

2021 ◽  
Author(s):  
Matheus G. do Nascimento ◽  
Paulo B. Lopes

This research proposes to evaluate the level of thermal comfort of the environment in real time using Internet of Things (IoT), Big Data and Machine Learning (ML) techniques for collecting, storage, processing and analysis of the concerned information. The search for thermal comfort provides the best living and health conditions for human beings. The environment, as one of its functions, must present the climatic conditions necessary for human thermal comfort. In the research, wireless sensors are used to monitor the Heat Index, the Thermal Discomfort Index and the Temperature and Humidity Index of remote indoor environments to intelligently monitor the level of comfort and alert possible hazards to the people present. Machine learning algorithms are also used to analyse the history of stored data and formulate models capable of making predictions of the parameters of the environment to determine preventive actions or optimize the environment control for reducing energy consumption.

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Mohamed Ali Mohamed ◽  
Ibrahim Mahmoud El-henawy ◽  
Ahmad Salah

Sensors, satellites, mobile devices, social media, e-commerce, and the Internet, among others, saturate us with data. The Internet of Things, in particular, enables massive amounts of data to be generated more quickly. The Internet of Things is a term that describes the process of connecting computers, smart devices, and other data-generating equipment to a network and transmitting data. As a result, data is produced and updated on a regular basis to reflect changes in all areas and activities. As a consequence of this exponential growth of data, a new term and idea known as big data have been coined. Big data is required to illuminate the relationships between things, forecast future trends, and provide more information to decision-makers. The major problem at present, however, is how to effectively collect and evaluate massive amounts of diverse and complicated data. In some sectors or applications, machine learning models are the most frequently utilized methods for interpreting and analyzing data and obtaining important information. On their own, traditional machine learning methods are unable to successfully handle large data problems. This article gives an introduction to Spark architecture as a platform that machine learning methods may utilize to address issues regarding the design and execution of large data systems. This article focuses on three machine learning types, including regression, classification, and clustering, and how they can be applied on top of the Spark platform.


Author(s):  
Amit Kumar Tyagi ◽  
Poonam Chahal

With the recent development in technologies and integration of millions of internet of things devices, a lot of data is being generated every day (known as Big Data). This is required to improve the growth of several organizations or in applications like e-healthcare, etc. Also, we are entering into an era of smart world, where robotics is going to take place in most of the applications (to solve the world's problems). Implementing robotics in applications like medical, automobile, etc. is an aim/goal of computer vision. Computer vision (CV) is fulfilled by several components like artificial intelligence (AI), machine learning (ML), and deep learning (DL). Here, machine learning and deep learning techniques/algorithms are used to analyze Big Data. Today's various organizations like Google, Facebook, etc. are using ML techniques to search particular data or recommend any post. Hence, the requirement of a computer vision is fulfilled through these three terms: AI, ML, and DL.


2021 ◽  
Vol 31 (1) ◽  
pp. 1-14
Author(s):  
Firas Mohammed Aswad ◽  
Ali Noori Kareem ◽  
Ahmed Mahmood Khudhur ◽  
Bashar Ahmed Khalaf ◽  
Salama A. Mostafa

Abstract Floods are one of the most common natural disasters in the world that affect all aspects of life, including human beings, agriculture, industry, and education. Research for developing models of flood predictions has been ongoing for the past few years. These models are proposed and built-in proportion for risk reduction, policy proposition, loss of human lives, and property damages associated with floods. However, flood status prediction is a complex process and demands extensive analyses on the factors leading to the occurrence of flooding. Consequently, this research proposes an Internet of Things-based flood status prediction (IoT-FSP) model that is used to facilitate the prediction of the rivers flood situation. The IoT-FSP model applies the Internet of Things architecture to facilitate the flood data acquisition process and three machine learning (ML) algorithms, which are Decision Tree (DT), Decision Jungle, and Random Forest, for the flood prediction process. The IoT-FSP model is implemented in MATLAB and Simulink as development platforms. The results show that the IoT-FSP model successfully performs the data acquisition and prediction tasks and achieves an average accuracy of 85.72% for the three-fold cross-validation results. The research finding shows that the DT scores the highest accuracy of 93.22%, precision of 92.85, and recall of 92.81 among the three ML algorithms. The ability of the ML algorithm to handle multivariate outputs of 13 different flood textual statuses provides the means of manifesting explainable artificial intelligence and enables the IoT-FSP model to act as an early warning and flood monitoring system.


10.6036/10342 ◽  
2021 ◽  
Vol 96 (6) ◽  
pp. 561-562
Author(s):  
MIKEL NIÑO

The Smart Industry has been developing has been developing at an accelerated pace since the beginning of the last decade, driven by of the last decade, driven by the by the emergence of technologies such as the Internet of Things, Compute of Things, Cloud Computing and Big Data Cloud Computing and Big Data technologies, as well as their connection and Big Data technologies, as well as their connection with machine learning algorithms for predictive data analysis [1] of data [1].


2017 ◽  
Vol 7 (1.3) ◽  
pp. 48 ◽  
Author(s):  
KVSN Rama Rao ◽  
Sivakannan S ◽  
M.A. Prasad ◽  
R. Agilesh Saravanan

Machine Learning is playing a predominant role across various domains. However traditional Machine Learning algorithms are becoming unsuitable for majority of applications as the data is acquiring new characteristics. Sensors, devices, servers, Internet, Social Networking, Smart phones and Internet of Things are contributing the major sources of data. Hence there is a paradigm shift in the Machine learning with the advent of Big Data. Research works are in evolution to deal with Big Data Batch and stream real time data. In this paper, we highlighted several research works that contributed towards Big Data Machine Learning.


Telecom IT ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 50-55
Author(s):  
D. Saharov ◽  
D. Kozlov

The article deals with the СoAP Protocol that regulates the transmission and reception of information traf-fic by terminal devices in IoT networks. The article describes a model for detecting abnormal traffic in 5G/IoT networks using machine learning algorithms, as well as the main methods for solving this prob-lem. The relevance of the article is due to the wide spread of the Internet of things and the upcoming update of mobile networks to the 5g generation.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3061 ◽  
Author(s):  
Shazia Noor ◽  
Hadeed Ashraf ◽  
Muhammad Sultan ◽  
Zahid Mahmood Khan

This study provides comprehensive details of evaporative cooling options for building air-conditioning (AC) in Multan (Pakistan). Standalone evaporative cooling and standalone vapor compression AC (VCAC) systems are commonly used in Pakistan. Therefore, seven AC system configurations comprising of direct evaporative cooling (DEC), indirect evaporative cooling (IEC), VCAC, and their possible combinations, are explored for the climatic conditions of Multan. The study aims to explore the optimum AC system configuration for the building AC from the viewpoints of cooling capacity, system performance, energy consumption, and CO2 emissions. A simulation model was designed in DesignBuilder and simulated using EnergyPlus in order to optimize the applicability of the proposed systems. The standalone VCAC and hybrid IEC-VCAC & IEC-DEC-VCAC system configurations could achieve the desired human thermal comfort. The standalone DEC resulted in a maximum COP of 4.5, whereas, it was 2.1 in case of the hybrid IEC-DEC-VCAC system. The hybrid IEC-DEC-VCAC system achieved maximum temperature gradient (21 °C) and relatively less CO2 emissions as compared to standalone VCAC. In addition, it provided maximum cooling capacity (184 kW for work input of 100 kW), which is 85% higher than the standalone DEC system. Furthermore, it achieved neutral to slightly cool human thermal comfort i.e., 0 to −1 predicted mean vote and 30% of predicted percentage dissatisfied. Thus, the study concludes the hybrid IEC-DEC-VCAC as an optimum configuration for building AC in Multan.


Author(s):  
Xabier Rodríguez-Martínez ◽  
Enrique Pascual-San-José ◽  
Mariano Campoy-Quiles

This review article presents the state-of-the-art in high-throughput computational and experimental screening routines with application in organic solar cells, including materials discovery, device optimization and machine-learning algorithms.


Sign in / Sign up

Export Citation Format

Share Document