scholarly journals CLEARANCE OF SOLID HOUSEHOLD WASTE WITH THE RECEPTION OF ALTERNATIVE TYPES OF ENERGY CARRIERS

2020 ◽  
Vol 2020 (4) ◽  
pp. 46-50
Author(s):  
F Rakhmatullayev ◽  
◽  
S Turabjanov

The research is devoted to improving the technology of obtaining alternative types of energy carriers by applying methods of pyrolysis of unclaimed types of solid domestic wastes of biological origin, which also allow solving the tasks of improving the ecological situation in the places of formation. The practical value and relevance of this research lies in the development of advanced technology for obtaining alternative fuels. The proposed pyrolysis unit allows producing gaseous and liquid hydrocarbons in a continuous cycle. In the atmosphere of the gasifying agent (air, oxygen, water vapor, carbon dioxide or their mixture), the gasification process is primarily performed in vortex reactors or fluidized bed furnaces at temperatures of 600-1100°C. Accordingly, the production (extraction) of AT from them requires pre-treatment, often quite serious: separation, grinding, mixing, drying, etc., which ultimately guarantees the consistency of its composition and quality.

2019 ◽  
Vol 2 (1) ◽  
pp. 8-12
Author(s):  
Angela Hartati ◽  
Diah Indriani Widiputri ◽  
Arbi Dimyati

This research was conducted for the purpose to overcome Indonesia waste problem. The samples are classified into garden waste, paper waste, wood, food waste, and MSW with objective to identify which type of waste give out more syngas since there is waste separation in Indonesia. All samples were treated by plasma gasification without pre-treatment (drying). Arc plasma torch used in this experiment was made by National Nuclear Energy Agency (BATAN) and used Argon as the gas source. Then the torch was connected to self-designed gasification chamber and gas washing system before injected into a gas bas for composition analysis. Another objective is to identify factors that may affect the gasification efficiency and the experiment shows that moisture content is not really affecting the efficiency but the duration of the process. The mass reduction of each samples were recorded, then the gas produced from the gasification process were analyzed. The result shows that food has the highest mass percentage reduced and producing the highest amount of hydrogen amongst other samples. However, treating MSW also produce considerably high amount of hydrogen. In conclusion, MSW direct treatment (without separation) using plasma gasification is feasible since it still produces desirable quality of syngas.


2014 ◽  
Vol 32 (1) ◽  
pp. 17-28 ◽  
Author(s):  
Dace Āriņa ◽  
Kaspars Kļavenieks ◽  
Juris Burlakovs

Abstract Production of refuse derived fuel from municipal solid waste in future shall play a strategic role in an integrated waste management system. The amount of landfilled biodegradable materials thus will be diminished according to provisions of the 1999 Waste Landfill Directive. The aim of this article is to evaluate cost effectiveness based on cost evaluation of the different complication of the waste pre-treatment equipment complectation and based on regenerable waste quantities in Latvia. The comparison of cost estimates is done in 3 scenarios considering potential waste quantities in Latvia: Scenario I - planned annual waste quantity is 20 kT; Scenario II - 40 kT and Scenario III - 160 kT. An increase in amount of waste and processing capacity means the decrease in costs of mechanical pre-treatment of 1 ton of waste. Thus, costs of mechanical sorting line under different scenarios with capacities of 10 t h-1, 20 t h-1 and 80 t h-1 are EUR 32 per t, EUR 24 per t and EUR 15 per t, respectively. Most feasible cost for a set of mechanical pre-treatment equipment for the capacity of 10 t h-1 is EUR 32 per t by using rotating drum screener with the following manual sorting. Mechanical pre-treatment equipment of unsorted municipal waste is economically nonbeneficial, when the use of fine (biologically degradable) fraction is not possible. As the sorting of biodegradable kitchen waste is not developed under the current waste management system in Latvia, the lines for mechanical pre-treatment of household waste would be better to install in landfills.


Author(s):  
Лемешева ◽  
E. Lemesheva ◽  
Кочегаров ◽  
D. Kochegarov ◽  
Тихомиров ◽  
...  

The growing demand for alternative motor fuels is dictated by aggravating energy and environmental problems. In article the analysis about possibility of use of alternative types of fuel for vehicles is carried out. Application of suitable alternative types of fuel will allow to improve in the future an economic and ecological situation in the country. Alternative fuel has to conform to the following requirements: to have necessary raw material resources, low cost, not to worsen operation of the engine, it is as little as possible to throw out harmful substances, whenever possible to be combined with the developed system of supply with fuel, etc. It is shown that natural gas and fuels derived from vegetable oils are most economical to use


2020 ◽  
Vol 19 (2) ◽  
pp. 138
Author(s):  
Najwa Hayati Abdul Halim ◽  
Suriyati Saleh ◽  
Noor Asma Fazli Abdul Samad

Biomass gasification is widely used for converting solid biomass into synthesis gas for energy applications. Raw biomass is commonly used as feedstock for the gasification process but it usually contains high moisture content and low energy value which lowering synthesis gas production. Thus, torrefaction as a pre-treatment process is necessary in order to upgrade the properties of feedstock for producing more synthesis gas production and improving gasification performance. The objective of this work is to study the effect of gasification temperature on the synthesis gas production and gasification performance using raw and torrefied palm mesocarp fibre (PMF). The gasification process is conducted using bubbling fluidized bed using steam as gasifying agent. Based on experimental work, by increasing gasification temperature from 650 – 900 °C, the compositions of hydrogen and carbon monoxide gases were enhanced greatly while carbon dioxide and methane gases were decreased for both raw and torrefied PMF. In terms of gasification performance, synthesis gas yield for raw and torrefied PMF is increased from 0.91 to 1.23 Nm3/kg and 1.10 to 1.35 Nm3/kg respectively. Besides, lower heating value (LHV) of torrefied PMF is 0.04 MJ/Nm3 higher than raw PMF at 900 °C. The result showed that the percentage of cold gas efficiency (CGE) reached maximum of 67% for raw PMF while carbon conversion (CC) at 85.6% for torrefied PMF at a gasification temperature of 900 °C. The higher CC obtained by torrefied PMF is because of the increment of carbon content from 45.2% to 53.7% as a result of torrefaction. Gasification temperature of 800 °C showed the best performance of the PMF gasification since the maximum performances of LHV is achieved and started to decrease once the gasification temperature is operated beyond 800 °C.


2020 ◽  
Vol 181 ◽  
pp. 01002
Author(s):  
Punchaluck Sirinwaranon ◽  
Duangduen Atong ◽  
Viboon Sricharoenchaikul

Cassava rhizome (CR) was torrefied to provide superior solid fuel quality for further gasification process. The torrefaction was carried out in the absence of oxygen at 220, 240, 260, and 280°C with a fixed residence time. Solid fuel after torrefaction has a higher calorific value from that of reduced volatile matters. The optimum energy yield of torrefied CR is 88.16% at 260°C. The heating value of 20.86 MJ/kg for a torrefied product can be achieved compared to 15.37 MJ/kg for untreated CR. The subsequent gasification of torrefied CR at temperature of 800°C yielded the highest gas product of 65 wt.%. The carbon and hydrogen conversions into CO and H2 were 14.28% and 29.95%, respectively. Synthesis gas (syngas) from the conversion maintained the H2/CO ratio of around 2–2.50, which is suitable for the Fischer–Tropsch process or can be used as the feedstock for petrochemical industry.


Author(s):  
Francisco Garci´a-Pen˜a ◽  
Alejandro Mun˜oz-Mozos ◽  
Pedro Casero-Cabezo´n

The potential use of MBM (Meat and Bone Meal) as fuel in a power plant has been recently originated by the mad cow disease, affecting not only Europe (the origin of the disease) but also other continents. MBM manufacturing companies have been forced to change their traditional ways of distribution due to the current ban of using MBM as cattle feed, therefore using a dumping site or an incinerator. To be considered as a fuel, several studies should be carried out. Preliminary characterisation of MBM showed a heating value higher than existing in coal, and a grain size acceptable to be mixed with regular fuel, hence appropriate to be brought into a boiler or a gasifier. Additionally, an expected advantage of using MBM in a gasification process was the possibility of using it as adequate slag/ash fusion agent (instead of traditional limestone), due to the high presence of Ca compounds. Related to environmental issues, the conventional thermal oxidation process (like incineration) shows several inconveniences, associated to the presence of hazardous compounds (like furans and dioxins) expected in organic matter combustion. There are few references of the existence of this kind of compounds in gasification process, but it is known that the existing reducing environment in a gasifier does not benefit its formation at all. Some of these issues were analysed in short duration full-scale tests developed in Puertollano IGCC Power Plant, owned by ELCOGAS, in which several MBM/regular fuel mixtures were tested. This paper describes the methodology used in these tests, fuel characteristics, main systems performance, and general conclusions about the viability of IGCC co-gasification using alternative fuels.


Author(s):  
Anna Magdalena Mauerhofer ◽  
Stefan Müller ◽  
Florian Benedikt ◽  
Josef Fuchs ◽  
Alexander Bartik ◽  
...  

Abstract A 100 kWth dual fluidized bed steam gasification pilot plant has been developed at TU Wien to convert different types of biogenic fuels into a valuable product gas. In this paper, the conversion of different biogenic fuels in combination with the utilization of CO2 as alternative gasification agent was investigated in the mentioned pilot plant. For this purpose, five experimental campaigns were carried out aiming at the investigation of softwood as reference fuel, and rapeseed cake, bark and lignin as alternative fuels. Pure olivine as well as a mixture (90/10 wt%) of olivine and limestone were used as bed materials. The product gas compositions of the different biogenic fuels changed depending on the elemental composition of the biogenic fuels. Thus, a high amount of carbon in the fuel enhanced CO formation, whereas an increased content of oxygen led to higher CO2 contents. Additionally, the presence of alkali metals in the biomass ash favoured the production of CO. The addition of limestone enhanced the H2 and CO contents via the water gas shift reaction as well as steam and dry reforming reactions, but had no significant effect on tar contents. Overall, this paper presents the feasibility of the dual-fluidized bed gasification process of different biogenic fuels with CO2 as gasification agent.


2014 ◽  
Vol 51 (1) ◽  
pp. 44-53
Author(s):  
R. Bendere ◽  
R. Smigins ◽  
O. Medne ◽  
L. Berzina- Cimdina ◽  
K. Rugele

Abstract Bioreactor landfilling, with the acceptance of landfill Directive 1999/31/EC has lost its actuality in European Union; at the same time, this method can still be used for acceleration of biowaste degradation and biogas production. One of the possibilities to reduce the disposal of biowaste is to use biocells for its anaerobic pre-treatment before landfilling. The daily filling up of such a cell requires isolation of the main volume to limit gas emissions, reduce smells, etc. Bioprocesses that are of the utmost importance for biocell treatment are often not taken into account in selection of materials to be used as daily landfill covers. Based on physical, chemical and biological methods the investigations have been carried out into different covering materials offered in the market, with identification of parameters that are the most important for daily covering the biocells. It is found that the materials fitted best this purpose should be of biological origin and consist of small bio-particles with large surface, without the inhibitors of anaerobic processes such as sulphuric compounds.


Jurnal METTEK ◽  
2018 ◽  
Vol 4 (2) ◽  
pp. 37
Author(s):  
I Wayan Arya Darma ◽  
I Nyoman Suprapta Winaya ◽  
I Ketut Gede Wirawan

Terjadinya krisis energi mendorong pemerintah untuk melakukan upaya pengembangan bahan bakar alternatif, yang berasal dari sumber daya energi terbarukan, salah satunya adalah biomassa. Pada penelitian ini proses konversi energi biomassa dilakukan menggunakan teknologi dual reactor fluidized bed. Bahan bakar biomassa yang digunakan adalah sekam padi dan pasir silika digunakan sebagai material bed nya. Temperatur pada reaktor gasifikasi diatur antara 600-7000C dan temperatur pada reaktor pembakaran konstan pada 7000C. Hasil penelitian menunjukkan peningkatan temperatur pada reaktor gasifikasi berpengaruh terhadap meningkatnya fuel conversion rate pada proses gasifikasi. The occurrence of an energy crisis encourages the government to make efforts to develop alternative fuels, which come from renewable energy resources, one of which is biomass. In this study the biomass energy conversion process was carried out using dual reactor fluidized bed technology. The biomass fuel used is rice husk and silica sand is used as a bed material. The temperature in the gasification reactor is set between 600-7000C and the temperature in the combustion reactor is constant at 7000C. The results showed that the increase in temperature in the gasification reactor had an effect on increasing carbon efficiency in the gasification process.  


Sign in / Sign up

Export Citation Format

Share Document