scholarly journals In vitro cytotoxicity, in vivo pharmacokinetic studies and tissue distribution studies of multifunctional citric acid dendrimers using the drug Cytarabine

2017 ◽  
Vol 9 (2) ◽  
pp. 28
Author(s):  
K Ravindra Reddy ◽  
B Narasimha Rao ◽  
KB Chandra Sekhar

<p>Dendrimers are considered the emerging polymeric architectures, known for their well defined molecular-weight, polydispersity, uniformity and high-surface functionality. These nano-architectures are capable of encapsulating low-high molecular-weight drug moieties in their interior or exterior through covalent bonding and host-guest interactions. Further, large surface volume made researchers to implicate dendrimers in biomedical and therapeutic applications. Regardless of the massive applications, sometimes its use is limited because of the cytotoxicity produced.  Considering this, the present research is focused on the synthesis and PEGylation of citric acid dendrimers. PEGylation is an act of conjugating polyethylene glycol to dendrimers that completely eliminates the toxicity issues associated with dendrimers and render them biocompatible. Cytarabine was loaded in the dendritic architecture to target specifically the tumor cells. Dendrimers are made tumor specific by incorporating certain agents that get cleaved in tumor environment. Synthesized dendrimers were studied for its effect on acute cytotoxicity, tissue-distributions and pharmacokinetic parameters.</p>

Pharmaceutics ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 260 ◽  
Author(s):  
Dongwei Wan ◽  
Min Zhao ◽  
Jingjing Zhang ◽  
Libiao Luan

This study aimed to develop a novel sustained release pellet of loxoprofen sodium (LXP) by coating a dissolution-rate controlling sub-layer containing hydroxypropyl methyl cellulose (HPMC) and citric acid, and a second diffusion-rate controlling layer containing aqueous dispersion of ethyl cellulose (ADEC) on the surface of a LXP conventional pellet, and to compare its performance in vivo with an immediate release tablet (Loxinon®). A three-level, three-factor Box-Behnken design and the response surface model (RSM) were used to investigate and optimize the effects of the citric acid content in the sub-layer, the sub-layer coating level, and the outer ADEC coating level on the in vitro release profiles of LXP sustained release pellets. The pharmacokinetic studies of the optimal sustained release pellets were performed in fasted beagle dogs using an immediate release tablet as a reference. The results illustrated that both the citric acid (CA) and ADEC as the dissolution- and diffusion-rate controlling materials significantly decreased the drug release rate. The optimal formulation showed a pH-independent drug release in media at pH above 4.5 and a slightly slow release in acid medium. The pharmacokinetic studies revealed that a more stable and prolonged plasma drug concentration profile of the optimal pellets was achieved, with a relative bioavaibility of 87.16% compared with the conventional tablets. This article provided a novel concept of two-step control of the release rate of LXP, which showed a sustained release both in vitro and in vivo.


2020 ◽  
Vol 2 (1) ◽  
pp. FDD28 ◽  
Author(s):  
Oleg Babii ◽  
Sergii Afonin ◽  
Tim Schober ◽  
Liudmyla V Garmanchuk ◽  
Liudmyla I Ostapchenko ◽  
...  

Aim: To verify whether photocontrol of biological activity could augment safety of a chemotherapeutic agent. Materials & methods: LD50 values for gramicidin S and photoisomeric forms of its photoswitchable diarylethene-containing analogs were determined using mice. The results were compared with data obtained from cell viability measurements taken for the same compounds. Absorption, Distribution, Metabolism, and Elimination (ADME) tests using a murine cancer model were conducted to get insight into the underlying reasons for the observed in vivo toxicity. Results: While in vitro cytotoxicity values of the photoisomers differed substantially, the differences in the observed LD50 values were less pronounced due to unfavorable pharmacokinetic parameters. Conclusion: Despite unfavorable pharmacokinetic properties as in the representative case studied here, there is an overall advantage to be gained in the safety profile of a chemotherapeutic agent via photocontrol. Nevertheless, optimization of the pharmacokinetic parameters of photoisomers is an important issue to be addressed during the development of photopharmacological drugs.


2016 ◽  
Vol 27 (3) ◽  
pp. 549-561 ◽  
Author(s):  
M. Dolores Giron-Gonzalez ◽  
Rafael Salto-Gonzalez ◽  
F. Javier Lopez-Jaramillo ◽  
Alfonso Salinas-Castillo ◽  
Ana Belen Jodar-Reyes ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 165-165
Author(s):  
Ahmed Kouta ◽  
Walter Jeske ◽  
Rick Duff ◽  
Debra Hoppensteadt ◽  
Omer Iqbal ◽  
...  

Introduction: Unfractionated heparin (UFH) remains to be the only parenteral anticoagulant used in the management of various thrombotic disorders such as deep vein thrombosis (DVT), pulmonary embolism (PE), and cardiovascular interventions. Most of the heparins used clinically are derived from porcine intestinal mucosa. There is likelihood of supply shortage of this important anticoagulant which is crucial for hemodialysis, cardiopulmonary bypass surgery and other vascular interventions. BMH are currently being developed for re-introduction for both medical and surgical indications. In contrast to the PMH, the active pharmaceutical ingredient (API) of BMH exhibit a somewhat weaker USP potency as cross-referenced against PMH. We hypothesized that at equivalent potencies as adjusted by using the USP reference, the BMH may exhibit comparable in vitro and in vivo effects. Therefore, in vitro and in vivo studies were used to compare the APIs of the bovine (140 U/mg) and the PMH (190 U/mg) to demonstrate their bioequivalence. Materials and Methods: API versions of PMH (190 U/mg) were obtained from Celsus Laboratories (Franklin, OH). API versions of BMH (140 U/mg) were obtained from KinMaster (Paso Fundo, Brazil). Each of these heparins was assayed for their molecular weight profile, AT affinity, USP potency, protamine and platelet factor 4 neutralization and anticoagulant/antiprotease profiles using standard laboratory methods. In the primate studies, potencies of each heparin were determined by amidolytic anti-Xa assay in relation to the USP heparin standard. Individual groups of primates (n=4) were administered 100 anti-Xa U/kg doses of bovine or porcine heparin via intravenous route. Blood samples were collected prior to dosing and at 15-, 30-, 60- and 120-minutes post-administration. Anti-Xa and anti-IIa activities were measured to determine circulating heparin concentrations using commercially available USP compliant kits (Aniara Diagnostica, West Chester, OH). These drug concentrations were used to determine pharmacokinetic parameters such as area under the curve (AUC), half-life (t1/2), clearance (Cl) and volume of distribution (Vd) using the PKSolver add-in for Excel. Results: BMH exhibited higher molecular weight profiles compared to PMH as determined by size exclusion chromatography (BMH (Mw) 18.6 ± 0.5 kDa and PMH 15.4 ± 0.4 kDa). BMH exhibited a potency of 140 U/mg and PMH had a potency of 195 U/mg. In the anticoagulant and antiprotease assays, the BMH exhibited lower functionality which was proportional to USP potency. In vitro, when the BMH was compared at a potency adjusted concentration with PMH, it showed identical calibration curves in the aPTT and anti-protease assays. However, in the protamine neutralization and platelet factor 4 studies, BMH required slightly higher amounts of the agents in contrast to PMH. The concentration vs. time curves for both heparins were almost superimposable. Peak drug levels of approximately 1.5 and 1.4 U/mL were measured using anti-Xa and anti-IIa assays, respectively. After 2 hours, circulating drug levels were decreased to approximately 0.4 U/mL for all heparins. Pharmacokinetic parameters calculated from plasma concentration-time curves indicated that both heparins behaved similarly. Mean half-life based on anti-Xa activity ranged from 54 ± 11 min for porcine heparin to 71 ± 18 min for bovine heparin. Slightly longer half-lives were observed using plasma concentrations determined using anti-IIa activity. Mean AUC values based on anti-Xa or anti-IIa activities were comparable for both heparins. Mean Vd (~60 ml/kg) and Cl (~0.75 ml/kg/min) were also comparable for both heparins. Conclusion: In vitro, BMH at adjusted biologic potency is comparable to PMH, however, it requires proportionally higher amount of protamine and platelet factor 4 due to the increased mass for adjusting to higher potency. In the non-human primates, USP cross-referenced anti-Xa potency adjusted based dosing results in comparable pharmacokinetic profiles for bovine and porcine heparins. Therefore, such dosing may provide uniform levels of anticoagulation for the parenteral indications for heparins. These observations warrant clinical validations in the specific indications. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4405-4405
Author(s):  
Laura M. Gorham ◽  
Gigi Frye ◽  
Michelle Miranda ◽  
Richard A. Steinman

Abstract Sulforaphane (SFN), an isothiocyanate derived from cruciferous vegetables, has been shown to inhibit the growth of prostate cancer cells in vitro and in vivo. We were interested in exploring potential antileukemic effects of SFN. The viability of multiple myeloid leukemic cell lines was decreased by 25uM SFN. Pharmacokinetic studies reported in rats suggest that this serum concentration can be achieved through oral dosing. Lower SFN concentrations (1–5 uM) inhibited leukemic cell growth without affecting cell viability. Synchronized HL-60 cells exposed to 25uM SFN were blocked at the G1/S phase transition. Kinetic analysis of cell cycle proteins demonstrated that the G1/S block arose from downmodulation of cyclins D3 and E rather than upregulation of cdk-inhibitors. Interestingly, we found that HL-60 cells expressed a low molecular weight (LMW, 36 kD) variant of cyclin E rather than (50 kD) full-length cyclin E. Treatment with SFN for as little as 2 hours caused a decrease in expression of the LMW cyclin E and induced the expression of a higher molecular weight (~50 kD) cyclin E isoform. Because LMW cyclin E has been associated with increased cdk2 activity and p27 resistance compared to full-length cyclin E, we postulate that SFN-mediated cyclin E isoform-switching contributed to growth inhibition of these leukemic cells. The signaling pathway through which SFN altered cyclin E expression appeared to be distinct from MEK/ERK and JNK pathways that have been implicated in the apoptotic effects of SFN. Given that cyclin E overexpression and, particularly, LMW cyclin E expression are correlated with poor prognosis in multiple cancers, the mechanism through which SFN decreases LMW cyclin E expression in these leukemic cells could have therapeutic significance.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1210
Author(s):  
Sultan Alshehri ◽  
Abdullah Alanazi ◽  
Ehab M. Elzayat ◽  
Mohammad A. Altamimi ◽  
Syed S. Imam ◽  
...  

Gefitinib (Gef) is a poorly water-soluble antitumor drug, which shows poor absorption/bioavailability after oral administration. Therefore, this study was carried out to develop Gef solid dispersions (SDs) using different carriers and different techniques in order to enhance its dissolution and oral absorption/bioavailability. Various SD formulations of Gef were established using fusion and microwave methods utilizing Soluplus, Kollidone VA64, and polyethylene glycol 4000 (PEG 4000) as the carriers. Developed SDs of Gef were characterized physicochemically and evaluated for in vitro dissolution and in vivo pharmacokinetic studies. The physicochemical evaluation revealed the formation of Gef SDs using fusion and microwave methods. In vitro dissolution studies indicated significant release of Gef from all SDs compared to the pure Gef. Optimized SD of Gef (S2-MW) presented significant release of Gef (82.10%) compared with pure Gef (21.23%). The optimized Gef SD (S2) was subjected to in vivo pharmacokinetic evaluation in comparison with pure Gef in rats. The results indicated significant enhancement in various pharmacokinetic parameters of Gef from an optimized SD S2 compared to the pure Gef. In addition, Gef-SD S2 resulted in remarkable improvement in bioavailability compared to the pure Gef. Overall, this study suggested that the prepared Gef-SD by microwave method showed marked enhancement in dissolution and bioavailability.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaomei Fan ◽  
Yan Xu ◽  
Danni Zhu ◽  
Yibing Ji

Ginsenosides Rh1 and Rg3, as the main bioactive components from Ginseng, are effective for prevention and treatment of cardiovascular diseases. Sheng-Mai-San (SMS), a classical complex prescription of traditional Chinese medicines, is composed of Radix Ginseng Rubra, Fructus Schisandrae, and Radix Ophiopogonis. In this research, a sensitive and specific liquid chromatography-mass spectrometric method was developed and validated for stereoselective determination and pharmacokinetic studies of 20(R)- and 20(S)-ginsenoside Rh1 and 20(R)- and 20(S)-ginsenoside Rg3 epimers in rat plasma after oral administration of Radix Ginseng Rubra or SMS extracts. The main pharmacokinetic parameters including Tmax, Cmax, t1/2, and AUC were calculated by noncompartment model. Compared with Radix Ginseng Rubra, SMS could significantly increase the content of ginsenosides Rh1 and Rg3 in the decocting process. Ginsenosides Rh1 and Rg3 following SMS treatment displayed higher Cmax, AUC(0–t), and AUC0–∞ and longer t1/2 and tmax except for 20(R)-Rh1 in rat plasma. The results indicated SMS compound compatibility could influence the dissolution in vitro and the pharmacokinetic behaviors in vivo of ginsenosides Rh1 and Rg3, suggesting pharmacokinetic drug-drug interactions between ginsenosides Rh1 and Rg3 and other ingredients from Fructus Schisandrae and Radix Ophiopogonis. This study would provide valuable information for drug development and clinical application of SMS.


2020 ◽  
Vol 33 (4) ◽  
pp. 670-677
Author(s):  
Sung-Hoon Ahn ◽  
Tae-Hwe Heo ◽  
Hyun-Sik Jun ◽  
Yongseok Choi

Objective: Interleukin-6 (IL-6) is a T cell-derived B cell stimulating factor which plays an important role in inflammatory diseases. In this study, the pharmacokinetic properties of LMT-28 including physicochemical property, <i>in vitro</i> liver microsomal stability and an <i>in vivo</i> pharmacokinetic study using BALB/c mice were characterized.Methods: LMT-28 has been synthesized and is being developed as a novel therapeutic IL-6 inhibitor. The physicochemical properties and <i>in vitro</i> pharmacokinetic profiles such as liver microsomal stability and Madin-Darby canine kidney (MDCK) cell permeability assay were examined. For <i>in vivo</i> pharmacokinetic studies, pharmacokinetic parameters using BALB/c mice were calculated.Results: The logarithm of the partition coefficient value (LogP; 3.65) and the apparent permeability coefficient values (P<sub>app</sub>; 9.7×10<sup>–6</sup> cm/s) showed that LMT-28 possesses a moderate-high cell permeability property across MDCK cell monolayers. The plasma protein binding rate of LMT-28 was 92.4% and mostly bound to serum albumin. The metabolic half-life (t<sub>1/2</sub>) values of LMT-28 were 15.3 min for rat and 21.9 min for human at the concentration 1 μM. The area under the plasma drug concentration-time curve and C<sub>max</sub> after oral administration (5 mg/kg) of LMT-28 were 302±209 h∙ng/mL and 137±100 ng/mL, respectively.Conclusion: These data suggest that LMT-28 may have good physicochemical and pharmacokinetic properties and may be a novel oral drug candidate as the first synthetic IL-6 inhibitor to ameliorate mammalian inflammation.


Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 130
Author(s):  
Kai Chen ◽  
Yingnan Si ◽  
Jia-Shiung Guan ◽  
Zhuoxin Zhou ◽  
Seulhee Kim ◽  
...  

Glioblastomas, accounting for approximately 50% of gliomas, comprise the most aggressive, highly heterogeneous, and malignant brain tumors. The objective of this study was to develop and evaluate a new targeted therapy, i.e., highly potent natural compound verrucarin A (Ver-A), delivered with monoclonal antibody-directed extracellular vesicle (mAb-EV). First, the high surface expression of epidermal growth factor receptor (EGFR) in glioblastoma patient tissue and cell lines was confirmed using immunohistochemistry staining, flow cytometry, and Western blotting. mAb-EV-Ver-A was constructed by packing Ver-A and tagging anti-EGFR mAb to EV generated from HEK293F culture. Confocal microscopy and the In Vivo Imaging System demonstrated that mAb-EV could penetrate the blood–brain barrier, target intracranial glioblastoma xenografts, and deliver drug intracellularly. The in vitro cytotoxicity study showed IC50 values of 2–12 nM of Ver-A. The hematoxylin and eosin staining of major organs in the tolerated dose study indicated minimal systemic toxicity of mAb-EV-Ver-A. Finally, the in vivo anti-tumor efficacy study in intracranial xenograft models demonstrated that EGFR mAb-EV-Ver-A effectively inhibited glioblastoma growth, but the combination with VEGF mAb did not improve the therapeutic efficacy. This study suggested that mAb-EV is an effective drug delivery vehicle and natural Ver-A has great potential to treat glioblastoma.


Author(s):  
De Baishakhi ◽  
Bhandari Koushik ◽  
Katakam Prakash ◽  
Adiki Shanta ◽  
Mitra Analava

This study reports the development of solid oral phytoceutical formulations with Phytocomposite (PHC), an antidiabetic poly herbal preparation as the active core material. Spherical, monolithic PHC microspheres of size range (10 -100 µm) were obtained with Hausner ratio, Carr’s index and angle of repose of 1.141± 0.010, 12.418±0.769 and 25.17±0.96 respectively. Encapsulation efficiency amongst different batches (F1-F5) ranged from 96.8- 100.7, with 99% release profile up to 12h. Conventional and sustained release tablets were prepared by direct compression and compatibility amongst polymers and the PHC checked by FTIR studies. Natural polymers viz. gum kondagogu, gum karaya, Aegle marmelos gum were used as release retardant. Optimized batch of conventional tablets (F6) showed 99.8 % release in 35 min and optimized batch of PHC-SR tablets (F12) showed 99.9% release at 12th hr, both followed zero order kinetics and non-Fickian diffusion. These optimized formulations were subjected to stability studies and the similarity factors (f2) of the conventional and SR tablets were 88.75 and 66.76 respectively. Pharmacokinetic parameters of three formulations in rat plasma were analyzed by PK Solver 2.0. In vitro-in vivo correlation (IVIVC) of three different formulations showed Level A correlation in all cases.


Sign in / Sign up

Export Citation Format

Share Document