Image Based Damage Detection Method for Composite Panel With Guided Elastic Wave Technique : Part Ⅱ. Damage Size Estimation Algorithm

Author(s):  
Changsik Kim ◽  
Yongun Jeon ◽  
Jungsun Park ◽  
Jin Yeon Cho
2016 ◽  
Vol 713 ◽  
pp. 244-247 ◽  
Author(s):  
Hidekazu Tanaka ◽  
Zahra Sharif Khodaei

Probability-based imaging which illustrates a distribution map of probability of damage presence in structures is a diagnostic method well established for damage detection in sensorized structures. Since the quality of the recorded signal is directly linked to the reliability of the diagnostic outcome, the assessment of robustness of the damage detection methodology is of high significance. In this paper, robustness and reliability of the current probability based imaging algorithms have been assessed for detecting BVID in a composite panel. Consequently, a proposed outlier analysis and DI probability distribution damage detection algorithm was shown to improve the reliability of the detection method.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2010 ◽  
Author(s):  
Hameed ◽  
Li ◽  
Chen ◽  
Qi

A multistage damage detection method is introduced in this work that uses piezoelectric lead zirconate titanate (PZT) transducers to excite/sense the Lamb wave signals. A continuous wavelet transformation (CWT), based on the Gabor wavelet, is applied to accurately process the complicated wave signals caused by the damage. For a network of transducers, the damage can be detected in one detection cell based on the signals scattered by the damage, and then it can be quantitatively estimated by three detection stages using the outer tangent circle and least-squares methods. First, a single-stage damage detection method is carried out by exciting a transducer at the center of the detection cell to locate the damaged subcell. Then, the corner transducers are excited in the second and third stages of detection to improve the damage detection, especially the size estimation. The method does not require any baseline signal, and it only utilizes the same arrangement of transducers and the same data processing technique in all stages. The results from previous detection stages contribute to the improvement of damage detection in the subsequent stages. Both numerical simulation and experimental evaluation were used to verify that the method can accurately quantify the damage location and size. It was also found that the size of the detection cell plays a vital role in the accuracy of the results in this Lamb-wave-based multistage damage detection method.


2021 ◽  
Vol 11 (10) ◽  
pp. 4589
Author(s):  
Ivan Duvnjak ◽  
Domagoj Damjanović ◽  
Marko Bartolac ◽  
Ana Skender

The main principle of vibration-based damage detection in structures is to interpret the changes in dynamic properties of the structure as indicators of damage. In this study, the mode shape damage index (MSDI) method was used to identify discrete damages in plate-like structures. This damage index is based on the difference between modified modal displacements in the undamaged and damaged state of the structure. In order to assess the advantages and limitations of the proposed algorithm, we performed experimental modal analysis on a reinforced concrete (RC) plate under 10 different damage cases. The MSDI values were calculated through considering single and/or multiple damage locations, different levels of damage, and boundary conditions. The experimental results confirmed that the MSDI method can be used to detect the existence of damage, identify single and/or multiple damage locations, and estimate damage severity in the case of single discrete damage.


2021 ◽  
pp. 147592172199847
Author(s):  
William Soo Lon Wah ◽  
Yining Xia

Damage detection methods developed in the literature are affected by the presence of outlier measurements. These measurements can prevent small levels of damage to be detected. Therefore, a method to eliminate the effects of outlier measurements is proposed in this article. The method uses the difference in fits to examine how deleting an observation affects the predicted value of a model. This allows the observations that have a large influence on the model created, to be identified. These observations are the outlier measurements and they are eliminated from the database before the application of damage detection methods. Eliminating the outliers before the application of damage detection methods allows the normal procedures to detect damage, to be implemented. A multiple-regression-based damage detection method, which uses the natural frequencies as both the independent and dependent variables, is also developed in this article. A beam structure model and an experimental wooden bridge structure are analysed using the multiple-regression-based damage detection method with and without the application of the method proposed to eliminate the effects of outliers. The results obtained demonstrate that smaller levels of damage can be detected when the effects of outlier measurements are eliminated using the method proposed in this article.


2013 ◽  
Vol 639-640 ◽  
pp. 1010-1014 ◽  
Author(s):  
Ke Ding ◽  
Ting Peng Chen

The damage detection method based on wavelet multi-scale analysis is presented in the paper. The damage location can be identified by analyzing the multi-scale wavelet transform coefficients of curvatures of mode shapes. The extreme value of wavelet transform coefficients indicates the damage location. But it is difficult to detect the location of defect if the defect is near to the equilibrium position of vibration. In order to solve this problem, we put forward a method which is to add the wavelet transform coefficients of multi modals together. The method can effectively overcome the above problem. Three damage situations of simply supported beam bridge are discussed in the paper. The results show that the peaks of wavelet transform coefficients indicate the damage location of structural. It is possible to pinpoint the damage location based on wavelet multi-scale analysis on curvatures of mode shapes.


1996 ◽  
Vol 17 (12) ◽  
pp. 563-565 ◽  
Author(s):  
Donggun Park ◽  
Chenming Hu ◽  
Scott Zheng ◽  
Nguyen Bui

Sign in / Sign up

Export Citation Format

Share Document