Study on the Dynamic Stress-Strain Behavior of Solid Propellant Using Low-Velocity Impact Test

Author(s):  
Jae-Min Hwang ◽  
Eun-Su Go ◽  
Hyun-Jun Jo ◽  
In-Gul Kim ◽  
Jae-Hoon Kim
2014 ◽  
Vol 591 ◽  
pp. 47-50 ◽  
Author(s):  
S. Rajesh ◽  
G.B. Bhaskar

Leaf springs are the traditional suspension elements, occupying a vital position in the automobile industry. This paper deals us the replacement of existing steel leaf spring by composite leaf spring. The dimensions of existing middle steel leaf spring of commercial vehicle (Tata ace mini truck) were taken and fabricated using a specially designed die. Single leaf of the suspension springs, each made up composite with bidirectional carbon fiber reinforced plastic (CFRP), bidirectional glass fiber reinforced plastic (GFRP) and hybrid glass-carbon fiber reinforced plastic (G-CFRP), was fabricated by hand layup process. It is to be mentioned here that the cross sectional area of the composite spring same as the metallic spring. A low velocity impact test rig was fabricated in the laboratory with loading set up. The composite leaf springs were tested with the low velocity impact test rig. By using the low velocity impact test rig, the deflection due to various drop height were measured.


2013 ◽  
Vol 535-536 ◽  
pp. 64-67
Author(s):  
C. Mahesh ◽  
Anindya Deb ◽  
S.V. Kailas ◽  
C. Uma Shankar ◽  
T.R.G. Kutty ◽  
...  

The characterization of a closed-cell aluminum foam with the trade name Alporas is carried out here under compression loading for a nominal cross-head speed of 1 mm/min. Foam samples in the form of cubes are tested in a UTM and the average stress-strain behavior is obtained which clearly displays a plateau strength of approximately 2 MPa. It is noted that the specific energy absorption capacity of the foam can be high despite its low strength which makes it attractive as a material for certain energy-absorbing countermeasures. The mechanical behavior of the present Alporas foam is simulated using cellular (i.e. so-called microstructure-based) and solid element-based finite element models. The efficacy of the cellular approach is shown, perhaps for the first time in published literature, in terms of prediction of both stress-strain response and inclined fold formation during axial crush under compression loading. Keeping in mind future applications under impact loads, limited results are presented when foam samples are subjected to low velocity impact in a drop-weight test set-up.


2011 ◽  
Vol 55-57 ◽  
pp. 1299-1304
Author(s):  
Yong Xie ◽  
Li Rong Yan

The cushioning characteristics of honeycomb paperboards with rhombic core were investigated and compared with the conventional hexagonal honeycomb paperboards. The compressing tests under low-velocity impact loads were performed to analyze stresses and deformation behaviors of specimens based on stress-strain curves and cushioning coefficient-strain curves. The results show that, compared of the hexagonal core, the rhombic core structure is able to decrease the rigidity and improve the initial cushioning properties of honeycomb paperboard. It is more benefit for packaging fragile items.


2021 ◽  
pp. 096739112110169
Author(s):  
Akim Djele ◽  
Ramazan Karakuzu

Nowadays, fiber reinforced laminated composites are widely used in many applications due to their high strength/weight ratio. However, these materials are very sensitive to transverse loading. The low-velocity impact test has been widely used by researchers to simulate the transverse loading. However, the low-velocity impact tests are highly toilsome, and this test requires expensive hardware and software systems. To reduce the experimental costs of the low-velocity impact test, it will be more attractive, much simpler, cheaper and more widely available to achieve impact behavior using quasi-static tests. Thus, to compare both tests, in this work the absorbed energy and force-deflection curves obtained by low-velocity impact and quasi-static indentation loading in two different fiber reinforced epoxy composites have been investigated. The Carbon-Kevlar hybrid fabrics and S2 glass fabrics were used as reinforcements. For low-velocity impact tests, a range of energies was used between 20 and 80 J. For quasi-static indentation test, the crosshead speeds were increased gradually from 1 mm/min to 60 mm/min. In addition, tests at 23°C, 40°C, 60°C and 80°C were made to examine the effect of temperature on these tests. As a result of the quasi-static tests performed, the amount of energy required to perforate the samples at a certain test speed is at the same level as the low-velocity impact test. Thus, the required energy amount for the perforation of the materials can be found by performing a quasi-static test at an appropriate speed, rather than the low-velocity impact test.


2018 ◽  
Vol 46 (4) ◽  
pp. 595-602 ◽  
Author(s):  
C. Venkategowda ◽  
S. Rajanna ◽  
N.G.S. Udupa ◽  
R. Keshavamurthy

2021 ◽  
Vol 893 ◽  
pp. 67-74
Author(s):  
Usha Kiran Sanivada ◽  
Gonzalo Mármol ◽  
Francisco P. Brito ◽  
Raul Fangueiro

The study of the impact energy and the composite behaviour plays a vital role in the efficient design of composite structures. Among the various categories of impact tests, it is essential to study low-velocity impact tests as the damage generated due to these loads is often not visible to the naked eye. The internal damages can reduce the strength of the composites and hence the impact behaviour must be addressed specifically for improving their applications in the transport industry. The main aim of this paper is to provide a comprehensive review of the work focusing on the assessment of biocomposites performance under low impact velocity, the different deformations, and damage mechanisms, as well the methods to improve the impact resistance.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2351 ◽  
Author(s):  
Punita Kumari ◽  
Jihui Wang ◽  
Saahil Khan

The effect of multiple/repeated impacts on a repaired composite was investigated using a low-velocity impact test. The composite samples were fabricated through a vacuum resin infusion method (VARI) and repaired by a scarf repair technique. Later, a repeated low-velocity impact test was performed on the original and repaired composites samples. Performance of the multi-impacted repaired and original samples was evaluated and compared by measuring maximum contact force, maximum displacement, maximum time duration, absorbed energy and damage area. Photographs of the post-impacted samples were taken to observe the multi-impact damage progression through visual inspection. The results showed that each repeated impact subjected the samples to more damage. Tensile tests revealed that the scarf repair restored 81.23% strength. It was also observed that the sample obtained the highest damage dent in the low-velocity impact test that failed early during a tensile test and carried the lowest ultimate load.


Sign in / Sign up

Export Citation Format

Share Document