scholarly journals A PRELIMINARY COMPARISON OF MITOCHONDRIAL D-LOOP REGION OF FUNAAB ALPHA AND NIGERIAN INDIGENOUS CHICKENS

2021 ◽  
Vol 20 (1) ◽  
pp. 1-11
Author(s):  
S.O. DUROSARO ◽  
B.T. OSHINOWO ◽  
A.C. AKPOJO ◽  
L.T. OLUYOMBO ◽  
I.C. NWOSU ◽  
...  

Nigerian indigenous chickens possess immunity from endemic diseases and have a better survival rate than commercial hybrid strains under local production conditions. FUNAAB Alpha chicken was developed by improving Nigerian indigenous chickens through crossbreeding and selection. This study compared the mitochondrial d-loop of FUNAAB Alpha and Nigerian indigenous chickens to check likely genetic erosion and loss of diversity in development of FUNAAB Alpha breed. Blood samples were collected from Nigerian indigenous (n=23) and FUNAAB Alpha (n=20) chickens sampled from farms and houses in Ogun state, Nigeria. The Hypervariable 1 (HV1) of the mitochondrial d-loop region was amplified and sequenced. Single nucleotide polymorphisms present in HV1 of chickens were identified using Clustal W. Genetic diversity of the region was determined using DnaSp v5 while selective forces acting on the chickens were predicted using HyPhy software implemented inside MEGA 6 software. Phylogenetic relationship among FUNAAB Alpha, Nigerian indigenous and other chicken breeds was determined using MEGA 6 software. Five polymorphisms were identified in FUNAAB Alpha chickens while twelve were identified in Nigerian indigenous chickens. All the polymorphisms identified in FUNAAB Alpha chickens were also observed in Nigerian indigenous chickens while seven polymorphisms were unique to Nigerian indigenous chickens. Higher diversity indices were observed in Nigerian indigenous chickens (number of haplotype: 4; haplotype diversity: 0.743±0.012; nucleotide diversity: 0.014±0.0013 and average number of nucleotide differences: 4.332) compared with FUNAAB Alpha chickens (number of haplotype: 2; haplotype diversity: 0.485±0.001; nucleotide diversity: 0.008±0.0001 and average number of nucleotide differences: 2.424). Positive selective forces were acting on FUNAAB Alpha chickens while negative selective forces were acting on Nigerian indigenous chickens. Phylogenetic analysis revealed that FUNAAB Alpha chickens clustered with Nigerian indigenous and South American chickens. It can be concluded that there was likely genetic erosion and loss of diversity in development of FUNAAB Alpha breed. Breeding programmes aimed at improvement of genetic diversity and reduction of genetic erosion should be applied in subsequent improvement of FUNAAB Alpha chickens.

Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1970
Author(s):  
Emel Özkan Ünal ◽  
Fulya Özdil ◽  
Selçuk Kaplan ◽  
Eser Kemal Gürcan ◽  
Serdar Genç ◽  
...  

In this study, to analyze the mtDNA D-loop region and the origin of the maternal lineages of 16 different donkey populations, and to assess the domestication of Turkish indigenous donkeys in seven geographical regions, we investigated the DNA sequences of the D-loop region of 315 indigenous donkeys from Turkey. A total of 54 haplotypes, resulting from 35 polymorphic regions (27 parsimoniously informative and 6 singleton sites), were defined. Twenty-eight of these haplotypes are unique (51.85%), and 26 are shared among different Turkish indigenous donkey populations. The most frequent haplotype was Hap 1 (45.71%), followed by two haplotypes (Hap 4, 15.55% and Hap 7, 5.39%). The breed genetic diversity, evaluated by the haplotype diversity (HD) and nucleotide diversity (πD), for the Turkish donkey populations ranged from 0.533 ± 0.180 (Tekirdağ–Malkara, MAL) to 0.933 ± 0.122 (Aydin, AYD), and from 0.01196 ± 0.0026 (Antalya, ANT) to 0.02101 ± 0.0041 (Aydin, AYD), respectively. We observed moderate-to-high levels of haplotype diversity and moderate nucleotide diversity, indicating plentiful genetic diversity in all of the Turkish indigenous donkey populations. Phylogenetic analysis (NJT) and median-joining network analysis established that all haplotypes were distinctly grouped into two major haplogroups. The results of AMOVA analyses, based on geographic structuring of Turkish native donkey populations, highlighted that the majority of the observed variance is due to differences among samples within populations. The observed differences between groups were found to be statistically significant. Comparison among Turkish indigenous donkey mtDNA D-loop regions and haplotypes, and different countries’ donkey breeds and wild asses, identified two clades and which is named Somali (Clade IV) and Nubian (Clade V) lineages. The results can be used to understand the origin of Turkish donkey populations clearly, and to resolve the phylogenetic relationship among all of the different regions.


2021 ◽  
Vol 17 (2) ◽  
pp. 105-114
Author(s):  
Anik Budhi Dharmayanthi ◽  
Achmad Muchsinin ◽  
Afriana Pulungan ◽  
Moch Syamsul Arifin Zein

Pelicans (Pelecanus conspicillatus) is one of the wild species that have a widely distribution. This bird has been successfully bred in Ragunan Zoo, Jakarta. The indicator of inbreeding in the captive population is shown by the decrease of nucleotide diversity and number of haplotypes. The result of genetic diversity analysis using D-loop fragment sequences showed low genetic diversity with nucleotide diversity (p) = 0.00064 ± 0.00010 and haplotype diversity (Hd) = 0.532 ± 0.061 in Pelecanus conspicillatus populations in the Ragunan Zoo. However, negative Fu's Fs value (-3,246) indicates population expansion. We found that there were seven haplotypes in bird populations in the captivity: haplotype 1, 2 and 3 consist of 43 individuals (65.15%), five individuals (7.57%), and 14 individuals (21.21%), respectively. For each haplotype 4, 5, 6 and 7 is only represented by one individual of Pelecanus conspicillatus (1.51%). The sex ratio of males to females is 1: 8.86 with four males identified as haplotype 1, and one male on haplotypes 3, 5 and 7, respectively. Genetic diversity data of the population is an important way for designing long-term plans and goals in efforts to maintain genetic diversity of the Pelecanus conspicillatus population in captivity.


2021 ◽  
Vol 46 (2) ◽  
pp. 93-105
Author(s):  
S. Suhardi ◽  
P. Summpunn ◽  
S. Wuthisuthimethavee

Kalang (KBuf), Krayan (KrBuf), and Thale Noi buffaloes (TBuf) are swamp buffalo genetic resources in Indonesia and Thailand. The maternally inherited mitochondrial DNA (mtDNA), particularly D-loop region is an important material for phylogenetic inference and analyzing genetic diversity. Therefore, the objectives of the present study were to evaluate genetic diversity and to reconstruct the phylogenetic tree within buffalo breeds in Kalimantan, Indonesia, and Phatthalung, Thailand using mtDNA D-loop sequences. A total of one hundred forty buffaloes (70 males and 70 females) were observed including 40 buffaloes from North (NK), 40 from East (EK), and 40 from South Kalimantan (SK) provinces Indonesia and 20 from Phatthalung (PT) province, Thailand. DNA samples were isolated from buffalo tail hairs. DNA sequences were manually assembled using BioEdit program with consideration of gaps and ambiguous sequences. The phylogenetic tree of buffalo was generated by PHYLIP software. The observed variables included haplotype diversity, genetic distance, and genetic tree. The 956 bp of amplified mtDNA D-loop fragment presented a total of 24 haplotypes with several mutations that included transitions (293), transversions (60), deletions (15), and insertions (20). The neighbor-joining tree using the Kimura 2 parameter model demonstrated two local buffalo clusters among buffalo from Kalimantan and Thailand with four buffalo relationship patterns observed from buffaloes in Kalimantan Island (KBuf and KrBuf), Indonesia. The Results of the present study demonstrated that the buffaloes sequence analysis revealed relatively high diversity and is a good basis to perform selection and modern buffalo breeding development.


2021 ◽  
Vol 19 (2) ◽  
pp. 245-257
Author(s):  
Pham Thanh Hai ◽  
Bui Xuan Phuong ◽  
Tran Huu Coi ◽  
Phung Thanh Tung ◽  
Ngo Quang Duc ◽  
...  

The H'mong short tail dog is breed indigenous dogs, distributed in mountainousareas of northern Vietnam. H'mong short tail dog possesses many valuable properties such as intelligence, agility, good health, good shape, human friendliness, ease of training and it can fully meet the needs of war Dogs intelligence, strength, good parenting, people friendly and more importantly, still keeping wild characteristics of hunting dogs. The total 45 samples (blood) collected from 45 individuals in two provinces of Northern Vietnam (Ha Giang and Lao Cai), were used to assess genetic diversity based on sequencing hypervariable – 1 region (HV1) in D-loop genes. In the current study showed that genetic diversity of H'mong short tail dog was high with nucleotide diversity (Pi = 0.00801), haplotype diversity (Hd = 0.96162) and average number of nucleotide differences (Kt = 5.18384). Furthermore, 25 different haplotypes were recorded and divided into four main groups: A, B, C, and E. Of which, seven new haplotypes in haplogroups A (An1 to An7) and 18 haplotypes have been published in the world. In addition, H'mong short tail dog was found rare haplogroups (B1, C2, E1 and E4). Notably, there is none individuals contain haplotype of haplogroups (D and F). H'mong short tail dog were identified 38 single nucleotide polymorphisms, including 32 nucleotide base substitution/base insertion and 6 nucleotide indel mutation. Almost mutation was transversion (31/32) and only one nucleotide transition mutations. Phylogenetic tree shown that H'mong short tail dog have close relationship with dogs origin from East Asia (China, Japan and Korea).


2017 ◽  
Vol 6 (6) ◽  
pp. 220-227
Author(s):  
Djirabaye Nadjiam ◽  
Aliou Guisse ◽  
Mbacké Sembéne ◽  
Fatimata Mbaye

Cassava is an important crop in the southern area of the Chad and it is char- acterized by many cultivars. But these cultivars have never been evaluated at the molecular level. Therefore, the objective of this study was to analyze their genetic diversity and their phylogenetic relationships. After DNA extraction, amplification and sequencing, the nucleotide sequences of the ITS1- 5.8S-ITS2 region of the ribosomal DNA of 12 selected cultivars have been analyzed. The Neighbor-Joining method, Maximum Parsimony, Maximum Likelihood and the Bayesian approach allowed studying the ancestral links. The identified nucleotide sequences have 542 bp. The targeted genes showed 468 conserved sites and 59 polymorphic sites. The nucleotide frequency was 18.64% for Adenine, 14.01% for Thymine, 34.46% for Cytosine and 32.89% for Guanine. The (G + C) content was 67.35% compared to 32.65% for the (A+T). The substitution rate was in favor of the transversions (67.46%) against the transitions (32.54%). The analysis revealed high haplotype diversity (Hd=0.954) and low nucleotide diversity (π=0.026) with an average number of pairwise nucleo de di erences (k=14.045). On the all popula on, 9 haplotypes, including 6 individual and 3 double, were identified. Gene c di eren a on is medium (FST=0.314) with a low number of migrants (Nm=0.55) and a medium genetic distance (0.028). Phylogenetic analysis based on the Bayesian approach revealed three groups of cul vars with the existence of two strongly supported clades. The cultivars studied are characterized by demographic stability or moderate population growth.They will be incorporated in the breeding program in order to limit their genetic erosion and to select the interesting characters. 


2020 ◽  
Vol 33 (1) ◽  
pp. 89-97
Author(s):  
Salah H. Faraj ◽  
Asaad Y. Ayied ◽  
Khalaf A. H. Al-Rishdy

The present study was undertaken to characterize the genetic diversity of the aromatase cytochrome P450 (CYP19) gene in 34 cows (15 local, 14 Holstein, and 5 Crosses) in Iraq. The objectives of the present study are to detect SNPs (mutations) in promoter p1.1 of the CYP19 gene in cattle bred in Iraq using sequencing techniques. We identified five single-nucleotide polymorphisms (SNP) loci of the CYP19 gene that were detected, namely G933T, G994C, A1044G, A1062T, and C1468A. The results showed the presence of 3, 4, and 2 polymorphic sites leading to the construction of 4, 5, and 3 different haplotypes for Holstein, local, and crosses respectively. Haplotype diversity were 0.791, 0.752, and 0.700 respectively. While nucleotide diversity was 0.0017, 0.0022, and 0.0013 respectively. Besides, we carried out a phylogenetic analysis of these sequences to address the evolutionary relationship between the animal species. These fragments were assigned in the GenBank database under the accession numbers: LC490756, LC490757, LC491437, LC491438, LC491439, LC491588, and LC491589.


2021 ◽  
Author(s):  
Yingying Ye ◽  
Chengrui Yan ◽  
Ferruccio Maltagliati ◽  
Zeqin Fu ◽  
Baoying Guo ◽  
...  

Abstract Perna viridis is a mussel commonly distributed along the Asian Indo-Pacific coasts. It is one of the main cultured species of that region. Previous studies focused mostly on the native populations within single countries; with the present study we analyzed the genetic diversity of P. viridis in a large study area, spanning from Oman to southern China. Three molecular markers were used, namely portions of the nuclear ITS region, and the mitochondrial COI gene and D-Loop region. The nuclear marker showed moderate levels of genetic diversity (haplotype diversity h = 0.543 to 0.897) and nucleotide diversity π = 0.0022 to 0.0064); whereas mitochondrial markers exhibited higher levels of genetic variability (h = 0.858 to 0.964 and π = 0.0012 to 0.0079). The estimates of inter-sample genetic divergence (FST) and the analysis of molecular variance highlighted that the Thai population is genetically divergent from the others. Our results showed the genetic variation of P. viridis at the rim of South China Sea and obtained the genetic basic information of P. viridis.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Xueqin Liu ◽  
Pu Zhang ◽  
Gongying Zhang ◽  
Sichen Li ◽  
Long Zhang ◽  
...  

To obtain a full understanding of the genetic diversity of the cytochrome oxidase III gene(COX-III)and its association with high altitude adaptation in Tibetan chickens, we sequencedCOX-IIIin 12 chicken populations (155 Tibetan chickens and 145 other domestic chickens). We identified a total of 11 single nucleotide polymorphisms (SNPs) and 12 haplotypes (Ha1–Ha12). Low genetic diversity (haplotype diversity = 0.531 ± 0.087, nucleotide diversity = 0.00125) was detected forCOX-III, and haplotype diversity of Tibetan chicken populations (0.750 ± 0.018) was markedly higher than lowland chicken populations (0.570 ± 0.028). Obvious genetic differentiation (nucleotide divergence = 0.092~0.339) and conspicuous gene communication (gene flow = 0.33~32.22) among 12 populations suggested that Tianfu black-bone fowl (white feather) was possibly introduced from Tibetan chicken. SNP m.10587 T>C affects the specific functions of the COX enzyme. Haplotype Ha3 was found in Tibetan chickens, and SNP m.10115G>A caused an amino acid substitution (Val62Ile) associated with phospholipid binding, while mutations m.10017C>A and m.10555G>A and the previously reported SNP m.10065T>C reduced the hydropathy index to some extent. Together, this indicates that the mitochondrial membrane is more hydrophobic in Tibetan chickens.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 311-312
Author(s):  
Jihye Cha ◽  
Haesu Ko ◽  
Bong-Hwan Choi ◽  
Gulwon Jang ◽  
Dajeong Lim ◽  
...  

Abstract Horses have played a significant role in the development of human society. As an important domestic animal, horses have been used for transport, labor, food and recreation. It is widely accepted that the horse was probably first domesticated on the Eurasian steppes from Ukraine to Turkestan between the fifth and fourth millennium BC, and the earliest domesticated horses subsequently spread out from their original range. However, we currently have little genetic evidence to demonstrate whether Korean domestic horse breeds originated in Korea or if it came into the area via an ancient migration route. In the present study, to obtain more knowledge of the origin and genetic diversity of Korean domestic horses, we analyzed seventeen 247-bp mitochondrial DNA (mtDNA) D-loop sequences of ancient horse bones excavated from seven archaeological sites located in the southern Korean Peninsula and Mongolia, aged between the fifth century B.C and nineteenth century A.D. The seventeen ancient horses revealed 9 variable positions when compared with the reference sequence (GenBank X79547). All the substitutions were transitions, and defined a total of 11 unique haplotypes with the haplotype diversity value of 0.9118±0.056. Among the 11 haplotypes, 3 haplotypes were detected more than once and were thus shared by individuals from the same or close archaeological sites. The largest haplotype consisted of 5 individuals, with another two haplotypes containing 2 individuals respectively, and eight haplotypes were singletons. The data indicate an abundant genetic diversity of the Korean ancient horses, and also suggest that the origin of Korean domestic horses is complex, and several maternal lines were introduced into the gene pool of Korean horses after their initial domestication.


Sign in / Sign up

Export Citation Format

Share Document