scholarly journals CASSAVA FLOUR SUBSTITUTION AND MOISTURE CONTENT VARIATION ON SOME QUALITY CHARACTERISTICS OF HEAT PUMP DRIED EXTRUDED FISH FEED

2020 ◽  
Vol 18 (1) ◽  
pp. 11-21
Author(s):  
F. T. FAYOSE ◽  
Z. HUAN

This study examined the effect of substitution of maize with cassava flour at varying moisture contents on heat pump drying and some quality attributes including strength properties, durability index, micro-structure and floatability. The samples identified as S1- S6, were prepared from various levels of cassava flour before being extruded at steady state at 3 moisture contents (30, 35, and 40% db) in a single screw cooking extruder. Drying was done with an open loop heat pump dryer while a scanning electron microscope (FEG-SEM) was used to study the microstructure of the fish feeds. Results showed that drying rates and pellet durability were proportional to the source and concentration of starch in the samples. Some of the samples floated in water.   The Coefficient of performance (COP) of the heat pump used for the drying decreased with increase in ambient temperature; the average COP being 4.77. The thermal efficiency of the heat pump dryer was 92.45%. The scanning electron microscopy indicated that cassava substituted samples lack some elements required of fish feed. Also, extrusion cooking resulted in changes in mineral composition of fish feed blends.      

Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3125 ◽  
Author(s):  
Yuan ◽  
Lin ◽  
Mao ◽  
Li ◽  
Yang ◽  
...  

This study presents the development and evaluation of a novel partially open-loop heat pump dryer with a unit-room (HPDU). The unit-room was designed to enable the ambient air to be mixed with the return air, thereby reducing the influence of the ambient air on the system performance, while maintaining a high system thermal efficiency. A modelling system for the HPDU was developed and validated based on a real-scale experimental study. By using the modelling system, the system characteristics under different ambient conditions and bypass factors were analyzed. The energy benefit of the proposed HPDU was quantified through a comparative study with a closed-loop heat pump dryer (CHPD). It is evident that a maximal specific moisture extraction rate (SMER) and a minimal total energy consumption (TEC) existed when changing the bypass factor of the HPDU under certain ambient temperatures. Compared to the CHPD, the coefficient of performance (COP) of the HPDU increased by up to 39.56%, presenting a significant energy benefit for the application of HPDU.


Author(s):  
S. Wongwises ◽  
T. Yoovidhaya ◽  
P. Supontana ◽  
W. Kaensup

In the present study, a heat pump dryer was designed and constructed. The performance of a heat pump assisted dryer was studied. The system was operated by using R22. The experimental data of the drying rates of shiitake mushroom was used to predict the specific moisture extraction rates (SMER). The maximum coefficient of performance (COP) of heat pump was also specified. The optimum operating condition was determined by the percentage of air recirculation from the total air mass flow rate. Finally, the key parameter that influence on the performance of the system and drying rate were specified.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 137
Author(s):  
Florian Schlosser ◽  
Heinrich Wiebe ◽  
Timothy G. Walmsley ◽  
Martin J. Atkins ◽  
Michael R. W. Walmsley ◽  
...  

Heat pumps are the key technology to decarbonise thermal processes by upgrading industrial surplus heat using renewable electricity. Existing insight-based integration methods refer to the idealised Grand Composite Curve requiring the full exploitation of heat recovery potential but leave the question of how to deal with technical or economic limitations unanswered. In this work, a novel Heat Pump Bridge Analysis (HPBA) is introduced for practically targeting technical and economic heat pump potential by applying Coefficient of Performance curves into the Modified Energy Transfer Diagram (METD). Removing cross-Pinch violations and operating heat exchangers at minimum approach temperatures by combined application of Bridge Analysis increases the heat recovery rate and reduce the temperature lift to be pumped at the same time. The insight-based METD allows the individual matching of heat surpluses and deficits of individual streams with the capabilities and performance of different market-available heat pump concepts. For an illustrative example, the presented modifications based on HPBA increase the economically viable share of the technical heat pump potential from 61% to 79%.


2021 ◽  
Vol 11 (5) ◽  
pp. 2279
Author(s):  
Sangwon Seo ◽  
František Mikšík ◽  
Yuta Maeshiro ◽  
Kyaw Thu ◽  
Takahiko Miyazaki

In this study, we evaluated the performance of low Global Warming Potential (GWP) refrigerant R1234yf on the activated carbon (MSC-30) for adsorption heating applications. The adsorption isotherms of MSC-30/R1234yf were measured using a constant-volume–variable-pressure (CVVP) method from very low relative pressure to the practical operating ranges. The data were fitted with several isotherm models using non-linear curve fitting. An improved equilibrium model was employed to investigate the influence of dead thermal masses, i.e., the heat exchanger assembly and the non-adsorbing part of the adsorbent. The model employed the model for the isosteric heat of adsorption where the adsorbed phase volume was accounted for. The performance of the heat pump was compared with MSC-30/R134a pair using the data from the literature. The analysis covered the desorption temperature ranging from 60 °C to 90 °C, with the evaporation temperature at 5 °C and the adsorption temperature and condensation temperature set to 30 °C. It was observed that the adsorption isotherms of R1234yf on MSC-30 were relatively lower than those of R134a by approximately 12%. The coefficient of performance (COP) of the selected pair was found to vary from 0.03 to 0.35 depending on the heat source temperature. We demonstrated that due to lower latent heat, MSC-30/R1234yf pair exhibits slightly lower cycle performance compared to the MSC-30/R134a pair. However, the widespread adaptation of environmentally friendly R1234yf in automobile heat pump systems may call for the implementation of adsorption systems such as the direct hybridization using a single refrigerant. The isotherm and performance data presented in this work will be essential for such applications.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1576
Author(s):  
Piotr Jadwiszczak ◽  
Jakub Jurasz ◽  
Bartosz Kaźmierczak ◽  
Elżbieta Niemierka ◽  
Wandong Zheng

Heating and cooling sectors contribute to approximately 50% of energy consumption in the European Union. Considering the fact that heating is mostly based on fossil fuels, it is then evident that its decarbonization is one of the crucial tasks for achieving climate change prevention goals. At the same time, electricity sectors across the globe are undergoing a rapid transformation in order to accommodate the growing capacities of non-dispatchable solar and wind generators. One of the proposed solutions to achieve heating sector decarbonization and non-dispatchable generators power system integration is sector coupling, where heat pumps are perceived as a perfect fit. Air source heat pumps enable a rapid improvement in local air quality by replacing conventional heating sources, but at the same time, they put additional stress on the power system. The emissions associated with heat pump operation are a combination of power system energy mix, weather conditions and heat pump technology. Taking the above into consideration, this paper presents an approach to estimate which of the mentioned factors has the highest impact on heat pump emissions. Due to low air quality during the heating season, undergoing a power system transformation (with a relatively low share of renewables) in a case study located in Poland is considered. The results of the conducted analysis revealed that for a scenario where an air-to-water (A/W) heat pump is supposed to cover space and domestic hot water load, its CO2 emissions are shaped by country-specific energy mix (55.2%), heat pump technology (coefficient of performance) (33.9%) and, to a lesser extent, by changing climate (10.9%). The outcome of this paper can be used by policy makers in designing decarbonization strategies and funding distribution.


2014 ◽  
Vol 960-961 ◽  
pp. 643-647
Author(s):  
Yan Sheng Xu

A stepped capillary tube consisting of two serially connected capillary tubes with different diameters is invented to replace the conventional expansion device. The mass flow rate of refrigerant R410A in stepped capillary tubes with different size were tested. The model of stepped capillary tube is proposed, and its numerical algorithm for tube length and mass flow rate is developed. The experimental results show that the performance comparing between stepped capillary tube system and capillary tube assembly system, the cooling capacity is reduced by 0.3%, the energy efficiency ratio (EER) is equal to each other, the heating capacity is increased by 0.3%, the coefficient of performance (COP) is decreased by 0.3%. That is to say, the performance index of the two kinds of throttle mechanism is almost identical. It indicates that the stepped capillary tube can replace the capillary tube assembly in the R410A heat pump type air conditioner absolutely. The model is validated with experimental data, and the results show that the model can be used for sizing and rating stepped capillary tube.


Author(s):  
Srinivas Vanapalli ◽  
M. E. H. Tijani ◽  
Simon Spoelstra

Domestic heating contributes to a significant amount of energy usage in the Netherlands. Due to scare energy resources, attention to develop new and efficient technologies is increasing. At ECN, a burner driven heat pump employing thermoacoustic technology is being developed for possible applications in households and offices. The desired temperature lift is from 10 °C to 80 °C. As a first step the heat pump is driven by a linear motor. Measurements and performance analysis of the heat pump are presented in this paper. The heat pump has a coefficient of performance which is the ratio of heat produced to the work input of 1.38 when operating between 10 °C to 80 °C. The performance relative to maximum possible Carnot value is 26.5%.


1999 ◽  
Author(s):  
D. A. Kouremenos ◽  
E. D. Rogdakis ◽  
G. K. Alexis

Abstract Absorption system have been investigated for many years. However, coefficient of performance COP or heat gain factor HGF for absorption systems are significantly lower than those for conventional compression systems. This has restricted their wide application. This paper discusses the behavior of mixture NH3-H2O through of an ejector, operating in an absorption heat pump system. This combination improves the performance of conventional absorption system and with the phasing out of ozone-damaging refrigerants, absorption refrigerators, heat pumps and air-conditioning now provide a potential alternative. For the detailed calculation of the proposed system a method has been developed, which employs analytical functions describing the thermodynamic properties of die mixture. The influence of three major parameters: generator, condenser and evaporator temperature, on ejector efficiency and heat gain factor of the system is discussed. Also the maximum value of HGF was estimated by correlation of above three temperatures.


Sign in / Sign up

Export Citation Format

Share Document