scholarly journals Ginseng Leaf Extract Prevents High Fat Diet-Induced Hyperglycemia and Hyperlipidemia through AMPK Activation

2010 ◽  
Vol 34 (4) ◽  
pp. 369-375 ◽  
Author(s):  
Hai-Dan Yuan ◽  
Sung-Jip Kim ◽  
Hai-Yan Quan ◽  
Bo Huang ◽  
Sung-Hyun Chung
2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Ying Shen ◽  
Su Jin Song ◽  
Narae Keum ◽  
Taesun Park

The present study aimed to investigate whether olive leaf extract (OLE) prevents high-fat diet (HFD)-induced obesity in mice and to explore the underlying mechanisms. Mice were randomly divided into groups that received a chow diet (CD), HFD, or 0.15% OLE-supplemented diet (OLD) for 8 weeks. OLD-fed mice showed significantly reduced body weight gain, visceral fat-pad weights, and plasma lipid levels as compared with HFD-fed mice. OLE significantly reversed the HFD-induced upregulation of WNT10b- and galanin-mediated signaling molecules and key adipogenic genes (PPARγ, C/EBPα, CD36, FAS, and leptin) in the epididymal adipose tissue of HFD-fed mice. Furthermore, the HFD-induced downregulation of thermogenic genes involved in uncoupled respiration (SIRT1, PGC1α, and UCP1) and mitochondrial biogenesis (TFAM, NRF-1, and COX2) was also significantly reversed by OLE. These results suggest that OLE exerts beneficial effects against obesity by regulating the expression of genes involved in adipogenesis and thermogenesis in the visceral adipose tissue of HFD-fed mice.


Author(s):  
Muhammad Mustapha Jibril ◽  
Azizah Haji‐Hamid ◽  
Faridah Abas ◽  
Jeeven Karrupan ◽  
Abdulkarim Sabo Mohammed ◽  
...  

2020 ◽  
Author(s):  
Yi Yan ◽  
Ting Li ◽  
Zhonghao Li ◽  
Mingyuan He ◽  
Dejiang Wang ◽  
...  

Abstract Background: Our previous work revealed that augmented AMPK activation inhibit cell migration by phosphorylating its substrate Pdlim5. As medial VSMCs contribute to the major composition of atherosclerotic plaques, a hypothesis is raised that modulation of AMPK-Pdlim5 signal pathway could retard the development of atherosclerosis through inhibiting migration of VSMCs. Therefore, we initiate the present study to investigate whether AMPK agonist like metformin is beneficial for suppressing diabetes-accelerated atherosclerosis in a diabetic mouse model induced by streptozotocin and high fat diet.Methods: For cell experiment, vascular smooth muscle cells (VSMCs) were overexpressed flag fused Pdlim5 and Pdlim5 mutant. Then the engineered VSMCs were introduced with metformin or control drug before determination of phosphorylated Pdlim5 with immunoblotting. For animal work, 8-week-old male ApoE−/−mice were induced diabetes with streptozotocin and then were randomly divided into 8 groups: control group, metformin hydrochloride (300 mg/kg/day) group, wildtype-Pdlim5 (Pdlim5 WT) carried adenovirus (Ad) group, Ad Pdlim5 WT and Met group, Ad Pdlim5 S177A group, Ad Pdlim5 S177A and Met group, Ad Pdlim5 S177D group, Ad Pdlim5 S177D and Met group. All mice were fed with high fat diet after virus infection. At the end, mice were sacrificed to observe atherosclerotic plaques and deposition of VSMCs in plaques. Moreover, 12–15-week-old Myh11-cre-EGFP male mice were accepted ligation of the left carotid artery and randomly divided into control and metformin treatment group. Finally, the injured vessel of Myh11-cre-EGFP mice were isolated to analyze the relationship between AMPK activation and neointima formation.Results: It was found that AMPK directly phosphorylate Pdlim5 at Ser177 in vitro, and metformin, an AMPK agonist, could induce phosphorylation of Pdlim5 indirectly and inhibition of cell migration as a result. Exogenous expression of phosphomimetic S177D-Pdlim5 inhibits lamellipodia formation and migration in VSMCs. It was also demonstrated that VSMCs contribute to the major composition of injury-induced neointimal lesions, while metformin could alleviate the occlusion of carotid artery in a wire-injury mice model. In order to investigate the function of AMPK-Pdlim5 pathway in the context of pathological condition, ApoE−/− male mice were divided randomly into control, streptozocin and high fat diet-induced diabetes mellitus, STZ + HFD together with metformin or Pdlim5 mutant carried adenovirus treatment groups. The results showed increased plasma lipids and aggravated vascular smooth muscle cells infiltration into the atherosclerotic lesion in diabetic mice compared with control mice. However, metformin alleviated diabetes-induced metabolic disorders and atherosclerosis, as well as decreased VSMCs infiltration in atherosclerotic plaques, while Pdlim5 phospho-abolished mutant carried adenovirus S177A-Pdlim5 undermine this protective function.Conclusions: The activation of AMPK-Pdlim5 pathway by chemicals like Metformin could inhibit formation of migratory machine of VSMCs and alleviate the progress of atherosclerotic plaques in diabetic mice. The maintenance of AMPK activity is beneficial for suppressing diabetes-accelerated atherosclerosis or metabolic syndrome.


2014 ◽  
Vol 8 ◽  
pp. 9-17 ◽  
Author(s):  
Magdalena Jeszka-Skowron ◽  
Ewa Flaczyk ◽  
Jan Jeszka ◽  
Zbigniew Krejpcio ◽  
Ewelina Król ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Wycliffe Makori Arika ◽  
Cromwell Mwiti Kibiti ◽  
Joan Murugi Njagi ◽  
Mathew Piero Ngugi

Obesity is the main component of metabolic syndromes involving distinct etiologies that target different underlying behavioral and physiological functions within the brain structures and neuronal circuits. An alteration in the neuronal circuitry stemming from abdominal or central obesity stimulates a cascade of changes in neurochemical signaling that directly or indirectly mediate spontaneously emitted behaviors such as locomotor activity patterns, anxiety, and exploration. Pharmacological agents available for the treatment of neurologic disorders have been associated with limited potency and intolerable adverse effects. These have necessitated the upsurge in the utilization of herbal prescriptions due to their affordability and easy accessibility and are firmly embedded within wider belief systems of many people. Gnidia glauca has been used in the management of many ailments including obesity and associated symptomatic complications. However, its upsurge in use has not been accompanied by empirical determination of these folkloric claims. The present study, therefore, is aimed at determining the modulatory effects of dichloromethane leaf extract of Gnidia glauca on locomotor activity, exploration, and anxiety-like behaviors in high-fat diet-induced obese rats in an open-field arena. Obesity was experimentally induced by feeding the rats with prepared high-fat diet and water ad libitum for 6 weeks. The in vivo antiobesity effects were determined by oral administration of G. glauca at dosage levels of 200, 250, and 300 mg/kg body weight in high-fat diet-induced obese rats from the 6th to 12th week. Phytochemical analysis was done using gas chromatography linked to mass spectroscopy. Results indicated that Gnidia glauca showed anxiolytic effects and significantly increased spontaneous locomotor activity and exploration-like behaviors in HFD-induced obese rats. The plant extract also contained phytocompounds that have been associated with amelioration of the main neurodegenerative mediators, viz., inflammation and oxidative stress. These findings provide “qualified leads” for the synthesis of new alternative therapeutic agents for the management of neurologic disorders. However, there is a need to conduct toxicity studies of Gnidia glauca to establish its safety profiles.


PLoS ONE ◽  
2015 ◽  
Vol 10 (11) ◽  
pp. e0141227 ◽  
Author(s):  
Aline B. Santamarina ◽  
Juliana L. Oliveira ◽  
Fernanda P. Silva ◽  
June Carnier ◽  
Laís V. Mennitti ◽  
...  

2013 ◽  
Vol 305 (5) ◽  
pp. R522-R533 ◽  
Author(s):  
Jonathan M. Peterson ◽  
Zhikui Wei ◽  
Marcus M. Seldin ◽  
Mardi S. Byerly ◽  
Susan Aja ◽  
...  

CTRP9 is a secreted multimeric protein of the C1q family and the closest paralog of the insulin-sensitizing adipokine, adiponectin. The metabolic function of this adipose tissue-derived plasma protein remains largely unknown. Here, we show that the circulating levels of CTRP9 are downregulated in diet-induced obese mice and upregulated upon refeeding. Overexpressing CTRP9 resulted in lean mice that dramatically resisted weight gain induced by a high-fat diet, largely through decreased food intake and increased basal metabolism. Enhanced fat oxidation in CTRP9 transgenic mice resulted from increases in skeletal muscle mitochondrial content, expression of enzymes involved in fatty acid oxidation (LCAD and MCAD), and chronic AMPK activation. Hepatic and skeletal muscle triglyceride levels were substantially decreased in transgenic mice. Consequently, CTRP9 transgenic mice had a greatly improved metabolic profile with markedly reduced fasting insulin and glucose levels. The high-fat diet-induced obesity, insulin resistance, and hepatic steatosis observed in wild-type mice were prevented in transgenic mice. Consistent with the in vivo data, recombinant protein significantly enhanced fat oxidation in L6 myotubes via AMPK activation and reduced lipid accumulation in H4IIE hepatocytes. Collectively, these data establish CTRP9 as a novel metabolic regulator and a new component of the metabolic network that links adipose tissue to lipid metabolism in skeletal muscle and liver.


Sign in / Sign up

Export Citation Format

Share Document