scholarly journals Analysis Study of Radar Probability of Detection for Fluctuating and Non-fluctuating Targets

2017 ◽  
Vol 2 (1) ◽  
pp. 12-20
Author(s):  
Naceur AOUNALLAH ◽  
Ali KHALFA

The radar analyst can develop and use mathematical and statistical techniques that lead to accurate prediction or adapting models for estimating the target detection performance. In radar detection theory, detection probability, false alarm probability, number of samples non-coherently integrated for a detection test, and signal-to-noise ratio (SNR) are closely interrelated. The present paper is intended to provide an overview of the calculations of radar probability of detection and its related parameters. The main methods and procedures for predicting the detection performance of either non-fluctuating or fluctuating targets are described. Performance’s analysis of the studied models is included, along with some graphical simulation examples.

2013 ◽  
Vol 380-384 ◽  
pp. 854-859
Author(s):  
Wei Zhao ◽  
Bao An Hao

t is a valid anti-interference method that blindly separates the contaminated radiant acoustic source object from interferences, but the separated radiant acoustic source object with arrange and scale ambiguity makes the likelihood ratio detection impossible. This paper solves the ambiguity problems by utilizing the correlation and energy consistency of the same source in the same overlapped frame data; Known delay distance, data sum length and signal to noise ratio (SNR), the paper analyzes algorithms performance and draws the receiver operating characteristic (ROC) curve in different distance, which offers an accord to design detector parameters in different false alarm probability and detection probability.


2011 ◽  
Vol 255-260 ◽  
pp. 2898-2903
Author(s):  
Chang Peng Ji ◽  
Mo Gao ◽  
Jie Yang

Double threshold detection based on constraint judgment is proposed for micro-seismic signal detection. The improvement effect on Probability of False Alarm and influence on Probability of Detection are quantitatively analyzed with constraint judgment. The mathematical models of total PFA and PD of double threshold detection based on constraint judgment are built, and the validity of the mathematical model is verified by simulation tests and experiments. The results show that the signal-to-noise ratio under scheduled PFA and PD Call be decreased by introducing constraint judgment to double threshold detection, and improve the identification accuracy of micro-seismic signal.


2020 ◽  
Author(s):  
Zoltan Derzsi

To detect a weak signal in human electrophysiology that is a response of a periodic external stimulus, spectral evaluation is mostly used. The recorded signal’s amplitude and phase noise components of the signal are statistically independent from each other, but both of them are decreasing the signal-to-noise ratio, which results in a lower probability of successful signal detection. Provided that the phase information of the stimuli is preserved, we found that a way to reject an additional phase noise component, which improves the detection probability considerably, by analysing the signal’s phase coherency instead of its spectrum.


Author(s):  
Puneeth K M ◽  
Poornima M S

The basic idea of 5th generation New Radio (5GNR) is to have very high data rate and to make it work efficiently for all Internet of Things (IOT) applications like healthcare, Automotive, Industrial etc. applications. This paper provides the Orthogonal Frequency Division Multiple Access (OFDM) baseband signal generation and detection method for Physical Random-Access Channel (PRACH). The proposed model provides four scenarios of preamble detection i.e., Preamble detection probability, Miss-detection probability, False alarm probability and null. We achieved the target of 99% of Probability of Detection and less than 0.1% of False-alarm probability at certain SNR as specified according to 3gpp standard requirements when tested in Additive White Gaussian Noise (AWGN) channel and Extended Typical Urban (ETU) channel.


2018 ◽  
Vol 15 (1) ◽  
pp. 51-54
Author(s):  
Mohanad Abdulhamid

Abstract This paper measures the performance of cooperative spectrum sensing, over Rayleigh fading channel and additive white Gaussian noise, based on softened two-bit hard combination scheme. Two measures based on energy detection are considered including effect of false alarm probability, and effect of number of users. Simulation results show that the detection probability increases with the increase of false alarm probability, number of users, and signal-to-noise-ratio.


Author(s):  
Linh

The article presents a method to evaluate the target detection efficiency of laser fuzes operating in foggy conditions. The evaluation model is built from: the distance equation of the laser system, the attenuation of the beam in two-way propagation, the disturbances affecting the system; the signal to noise ratio SRN has determined the detection probability of the receiver. The model was used to evaluate with wavelengths: 850 nm, 1000 nm and 1550 nm, when propagating in three different bad weather conditions. The results show that the most effective detection of the target when using a wavelength of 1550 nm in visibility in haze and mist conditions (visibility V > 500 m). In fog conditions (visibility V < 500 m), the above three wavelengths provide the same detection efficiency. The article provides the method and instructions for choosing the wavelength of the laser fuze.


2014 ◽  
Vol 556-562 ◽  
pp. 4522-4525
Author(s):  
Rui Yan Du ◽  
Fu Lai Liu ◽  
Ya Ping Wu

Spectrum sensing is a fundamental problem for cognitive radio system as it allows secondary user (SU) to find spectrum holes for opportunistic reuse. This paper presents a new spectrum sensing method based on the data stacking technique (temporal smoothing technique) and power method. The “maximum eigenvector” is used to detect the spectrum holes. Compared with the previous works, the proposed approach can provide better performance, such as higher detection probability in the lower signal-to-noise-ratio (SNR) scenario, etc.


2020 ◽  
Vol 20 (2) ◽  
pp. 60
Author(s):  
Syahfrizal Tahcfulloh ◽  
Muttaqin Hardiwansyah

Phased-Multiple Input Multiple Output (PMIMO) radar is multi-antenna radar that combines the main advantages of the phased array (PA) and the MIMO radars. The advantage of the PA radar is that it has a high directional coherent gain making it suitable for detecting distant and small radar cross-section (RCS) targets. Meanwhile, the main advantage of the MIMO radar is its high waveform diversity gain which makes it suitable for detecting multiple targets. The combination of these advantages is manifested by the use of overlapping subarrays in the transmit (Tx) array to improve the performance of parameters such as angle resolution and detection accuracy at amplitude and phase proportional to the maximum number of detectable targets. This paper derives a parameter estimation formula with Capon's adaptive estimator and evaluates it for the performance of these parameters. Likewise, derivation for expressions of detection performance such as the probability of false alarm and the probability of detection is also given. The effectiveness and validation of its performance are compared to conventional estimator for other types of radars in terms of the effect of the number of target angles, the RCS of targets, and variations in the number of subarrays at Tx of this radar. Meanwhile, the detection performance is evaluated based on the effect of Signal to Noise Ratio (SNR) and the number of subarrays at Tx. The evaluation results of the estimator show that it is superior to the conventional estimator for estimating the parameters of this radar as well as the detection performance. Having no sidelobe makes this estimator strong against the influence of interference and jamming so that it is suitable and attractive for the design of radar systems. Root mean square error (RMSE) on magnitude detection from LS and Capon estimators were 0.033 and 0.062, respectively. Meanwhile, the detection performance for this radar has the probability of false alarm above 10-4 and the probability of detection of more than 99%.


2020 ◽  
Vol 26 (12) ◽  
pp. 131-140
Author(s):  
Areej Munadel ◽  
Ekhlas Kadhum Hamza

As a result of the increase in wireless applications, this led to a spectrum problem, which was often a significant restriction. However, a wide bandwidth (more than two-thirds of the available) remains wasted due to inappropriate usage. As a consequence, the quality of the service of the system was impacted. This problem was resolved by using cognitive radio that provides opportunistic sharing or utilization of the spectrum. This paper analyzes the performance of the cognitive radio spectrum sensing algorithm for the energy detector, which implemented by using a MATLAB Mfile version (2018b). The signal to noise ratio SNR vs. Pd probability of detection for OFDM and SNR vs. BER with CP cyclic prefix with energy detector is calculated and analyzed. In this paper, the proposed work produces more accurate results compared to the existing techniques at low SNR values.


2014 ◽  
Vol 11 (2) ◽  
pp. 660-672
Author(s):  
Baghdad Science Journal

Image fusion is one of the most important techniques in digital image processing, includes the development of software to make the integration of multiple sets of data for the same location; It is one of the new fields adopted in solve the problems of the digital image, and produce high-quality images contains on more information for the purposes of interpretation, classification, segmentation and compression, etc. In this research, there is a solution of problems faced by different digital images such as multi focus images through a simulation process using the camera to the work of the fuse of various digital images based on previously adopted fusion techniques such as arithmetic techniques (BT, CNT and MLT), statistical techniques (LMM, RVS and WT) and spatial techniques (HPFA, HFA and HFM). As these techniques have been developed and build programs using the language MATLAB (b 2010). In this work homogeneity criteria have been suggested for evaluation fused digital image's quality, especially fine details. This criterion is correlation criteria to guess homogeneity in different regions within the image by taking a number of blocks of different regions in the image and different sizes and work shifted blocks per pixel. As dependence was on traditional statistical criteria such as (mean, standard deviation, and signal to noise ratio, mutual information and spatial frequency) and compared with the suggested criteria to the work. The results showed that the evaluation process was effective and well because it took into measure the quality of the homogenous regions.


Sign in / Sign up

Export Citation Format

Share Document