scholarly journals Study of the tensile properties of materials for clothing

The article is devoted to the study of the nature and magnitude of deformations in the materials used in the details of shoulder clothing. Experimental studies were performed under the double-walled impact of a tangential deformable load to determine the values f residual deformations. As a result of experimental studies of the deformation properties of samples of coat fabrics, the values of residual deformations are obtained for various load cases. The results of experimental studies are recommended for use in the appointment of constructive increases.

Author(s):  
A. V. Dolgova ◽  
G. V. Nesvetaev

Objectives Reliability and durability of structures using materials with various properties (plaster coatings, cement glue, new concrete during repair and restoration of structures, etc.) largely depends on the adhesion of the layers and the deformation properties of the coatings. To obtain the required properties of materials used for coatings, modifiers based on polymers and low-modulus inclusions are introduced into the composition of new concretes, for example, entrained air. The aim of the work is to identify some patterns of change in the properties of concrete with the joint introduction of these modifiers.Method Experimental determination of the tensile strength in bending, compression, E-modulus, adhesion to the concrete base by standard methods.Result The influence of separate and joint introduction of dispersible polymer powders and various low-modulus inclusions into the composition of fine-grained concrete has been established.Conclusion The joint introduction to the composition of fine-grained concrete of various low-modulus inclusions and redispersible polymer powders provides a reduction in the stress level during forced deformations due to the different effects additives on the strength and deformation properties and contributes to increased adhesion to the concrete. 


2021 ◽  
Vol 1038 ◽  
pp. 323-329
Author(s):  
Zlata Holovata ◽  
Daria Kirichenko ◽  
Irina Korneeva ◽  
Stepan Neutov ◽  
Marina Vyhnanets

The design of a stand for testing concrete and fiber-reinforced concrete specimens-"eight" in tension, which provides axial load application and minimizes the effect of stress concentration at the ends of the specimen. The design of the stand is such that the distance between the axis of load application and the central hinge is 108 cm, and between this hinge and the axis of the test specimen is 21 cm, as a result of which the load transferred to the specimen is 5.143 times greater than the applied one. At the first stage of testing, it was found that the optimal characteristics of the fiber-concrete mixture is a matrix with a large aggregate ≤ 10 mm with 1.0% fiber reinforcement. At the second stage, the ultimate strength of fiber-reinforced concrete for axial tension was determined - 1.28 MPa when reinforced with wave fiber and 1.37 MPa when reinforced with anchor fiber, which amounted to 4.1% and 4.4% of compressive strength, respectively. It was also found that concrete reinforced with anchor fiber has higher deformation properties than concrete reinforced with wave fiber.


Author(s):  
Ali Mardani ◽  
Sultan Husein Bayqra ◽  
Süleyman Özen ◽  
Zia Ahmad Faqiri ◽  
Kambiz Ramyar

1998 ◽  
Vol 4 (2) ◽  
pp. 101-108 ◽  
Author(s):  
Gediminas Marčiukaitis

Various composite building products consisting of layers of different physical-mechanical properties being tied rigidly together are manufactured and used in construction. In many cases such products curve, become flaky, crack and their thermo-insulating capability suffers. It occurs because deformation properties are not adjusted, different layers of such products deform differently under the load. And the deformation effects the behaviour of the whole structure. A correct adjustment of deformations can be achieved with allowance for creep of different layers and of the whole composite. Determination of creep parameters—creep coefficient and specific creep—depends on the orientation of layers in respect of the direction of force action. When layers are situated transverselly in respect of the direction of action of forces (stresses), creep parameters of composite depend on creep parameters of materials of separate layers and on relative volumes of these layers. Creep deformations of a composite can be described by equations describing creep of individual layers. Appropriate equations and formulas ((17)-(25)) are presented for determining such deformations. When layers are parallel to the direction of stresses, redistribution of these stresses between layers takes place. Compression stresses increase in a layer with higher modulus of deformation and decrease in that with lower modules. Proposed equations (37)-(42) enable to determine redistribution of stresses between layers, the main creep parameters of composite, their modulus of deformations and creep deformations themselves when strength of a composite product is reached, E(t0)=E(t)=const and stresses produce linear creep. Such loading of a composite product is the most common in practice. Presented formulas ((46), (52)) and diagrams show that it is possible to design a composite building product or material with creep parameters given in advance by means of appropriate distribution of product layers, selecting ratios between layers and properties of materials.


Akustika ◽  
2019 ◽  
Vol 32 ◽  
pp. 110-114
Author(s):  
Minas Minasyan ◽  
Armen Minasyan ◽  
Aung Thant

The paper notes that the structure of the wire rope is one of the most suitable materials used as a fire-resistant elastic element of vibration-insulating structures and fasteners (vibration isolators). To solve the problems of vibration isolation of marine diesel power plants in the framework of development and improvement of the shock absorption system, the original patented elastic supports with elastic elements made of steel wire rope in the form of a torus are presented. When commercially available vibration isolators do not meet the relevant requirements of vibration protection of a particular object, the solution to the existing problem can be achieved by using the proposed wire rope vibration isolators. The technical results of the original patented inventions are: - equal stiffness in the horizontal plane - ensuring the reliability and high vibration efficiency of protection against impacts and shocks. The proposed designs of vibration isolators are easy (technological in manufacturing) to manufacture and assemble, reliable and durable - the service life is 10 years or more. Vibration efficiency is confirmed by the vibration acceleration spectra before and after the vibration isolator of the damping system of the ship diesel-generator DGA-500 and the diesel unit with a 2H 8.5/11 engine and water brake on a common sub-frame. The three-year trial life of the DGA-500 and experimental studies on a diesel unit with a 2H 8.5/11 engine and water brake on a common sub-frame confirms their efficiency and effectiveness.


Author(s):  
D.G. Fomin ◽  
◽  
N.V. Dudarev ◽  
S.N. Darovskikh ◽  
◽  
...  

One of the modern trends in the development of communication systems, information and telecommunication systems, air traffic control systems, etc. is the transition and development of higher-frequency wavelength ranges. In this regard more and more stringent requirements (in terms of spectrum, out-of-band and spurious radio emission, and in the shape of the output signal) are imposed on radio engineering devices that transmit and receive microwave radio signals. As a result, the requirements for the design and functional features of microwave electronic devices are increasing. One of these requirements is to assess the degree of compliance with the required values of dielectric properties of materials used in the design of microwave electronic devices. This requirement is justified by the fact that the electrical parameters of such microwave devices as: strip filters, power dividers, printed antennas and others, directly depend on the dielectric properties of the materials used in their substrate designs. In this regard, three main methods have now emerged for assessing the dielectric properties of materials: the resonant method, the non-resonant method, and the free space method. Aim. The aim of this article is to carry out a comparative analysis of the known methods for measuring the dielectric properties of materials in the microwave range of wavelengths and devices for their implementation. Materials and methods. The authors of the article reviewed the scientific literature of domestic and foreign publications. Results. For each of the methods for measuring the dielectric properties of materials, their main idea, practical implementation, a mathematical model for processing experimental data and areas of application are given. The advantages and disadvantages for each of the methods for measuring the dielectric properties of materials are given too. Conclusion. The applicability of each of the considered methods depends on such factors as: the shape of the investigated dielectric material, its state of aggregation, the possibility of measuring amplitude or complex transmission and reflection coefficients, the presence of an anechoic chamber, etc.


Sign in / Sign up

Export Citation Format

Share Document