scholarly journals ANALISIS EFISIENSI ENERGI LISTRIK PADA BOHLAM LAMPU MENGGUNAKAN SISTEM PANEL SURYA

2021 ◽  
Vol 6 (2) ◽  
pp. 71-74
Author(s):  
Eti Elisa

The purpose of this study was to determine the efficiency of the use of solar panels applied to light bulbs. The purpose of this research is also to explain how the solar panels work and to find out the advantages of accuracy in their implementation. The method used is the journal review method regarding solar panels and electrical energy in light bulbs, using journals that have been recognized both nationally and internationally.

Author(s):  
Naglaa Kamel Bahgaat ◽  
Nariman Abdel Salam ◽  
Monika Mady Roshdy ◽  
Sandy Abd Elrasheed Sakr

Rapid growth in mobile networks and the increase of the number of cellular base stations requires more energy sources, but the traditional sources of energy cause pollution and environmental problems. Therefore, modern facilities tend to use renewable energy sources instead of traditional sources. One renewable source is the photovoltaic panel, which made from semiconductor materials which absorb sunlight to generate electricity. This article discusses the importance of using solar panels to produce energy for mobile stations and also a solution to some environmental problems such as pollution. This article provides a design for a solar-power plant to feed the mobile station. Also, in this article is a prediction of all loads, the power consumed, the number of solar panels used, and solar batteries can be used to store electrical energy. Finally, an estimation of the costs of all components will be presented. Good discussion and conclusion will be presented about the results obtained. The results obtained are promising. In addition, a future plan is described to complete this important study.


Author(s):  
Muhammadiya Rifqi ◽  
Heni Fitriani ◽  
Puteri Kusuma Wardhani

Buildings contribute more than 40% of world energy consumption, so it is feared that it will cause energy problems in thefuture, especially in the construction sector. One solution to reducing this problem is by analyzing energy use at the initialdesign stage and utilizing solar energy as one of the solar power plants (PLTS) in office buildings. To analyze the use ofenergy in buildings, Building Information Modeling (BIM) was used. The purpose of this research is to analyze the annualenergy level of office buildings in Palembang using BIM software, namely Autodesk Revit. The number of solar panels aswell as the amount of energy were also identified using web-based software (HelioScope) resulting the economic feasibilityas indicated by the installation of solar panels as a component of PV mini-grid. The results showed that the use of BIMtechnology in analyzing building energy can provide a detailed description of the building model at the design stage. Revitanalysis indicates that the building consumed electrical energy per year for about 3,647,713 kWh with a roof area of 1,657m2. In addition, based on the HelioScope analysis, the use of renewable energy from the installation of PLTS was 152,900kWh/year. Meanwhile, for economic feasibility analysis, the installation of PLTS in office buildings can provide a positive NetPresent Value (NPV), indicating a feasible project.


2018 ◽  
Vol 67 ◽  
pp. 04011
Author(s):  
Sunaryo Sunaryo ◽  
Adri Wirawan Ramadhani

Indonesia has more than 17,000 islands and has plenty of beautiful beaches and underwater spots which have great potential for maritime tourism. Tourism was ranked 3rd on Indonesia's foreign income and plays an important role for the country’s ecomony. Despite having potential advantages, the government has not yet maximized its efforts to develop the attractiveness of its maritime tourism. Beside the beautiful spots Indonesia is also blessed with all year long sun shine, which could be tapped as renewable and green energy as substitution to fossil fuel. Refer to these great advantages of natural resources the research was aimed to support the government’s program in developing its maritime tourism and to promote the use of green and renewable energy by designing a solar-powered tourism recreational boat which has 12 meters of length. The paper is focused on the design of solar energy and its electrical system, which includes conversion of solar energy to electrical energy and store it in the battery, the required electrical power is also predicted based on the appliances and equipment installed in the boat, the optimum attachment of solar panels on the boat structure is also calculated. All the methods and information we use are obtained from literature study, discussion with experts, and surveys to Jagur as solar-powered electric boat from Universitas Indonesia.


2021 ◽  
Vol 7 (20) ◽  
pp. 202129
Author(s):  
Vivyane Alencar Marques Araújo do Nascimento ◽  
Taynara Bastos Trindade ◽  
Clarice Maia Carvalho

ANALYSIS OF PARAMETERS FOR PHOTOVOLTAIC SOLAR ENERGY GENERATION IN ACRE, BRAZILANÁLISIS DE PARÁMETROS PARA LA GENERACIÓN DE ENERGÍA SOLAR FOTOVOLTAICA EN ACRE, BRASILRESUMOEnergia solar é obtida através de placas solares fotovoltaicas com a função de captar a energia do sol e transformar em energia elétrica, aumentando a geração de energia solar nas regiões com maior captação de energia luminosa. Assim, neste artigo analisou-se os parâmetros para geração de energia solar fotovoltaica no Acre, Brasil. Coletou-se dados referentes a insolação, temperaturas máximas e mínimas, precipitação e umidade relativa no Instituto Nacional de Meteorologia, irradiação solar, no Centro de Referências para Energias Solar e Eólica Sérgio de S. Brito, regionais do Vale do Juruá e Vale do Acre, no período de 2015-2020. As análises foram quantitativas, utilizando o cálculo da média e cálculo do plano inclinado. Na comparação das regionais, o Vale do Acre apresentou melhores resultados para geração de energia solar e com um ângulo com a maior média diária anual de irradiação solar, considerando-se projetar-se células fotovoltaicas na regional. O trabalho apresenta que o Acre possui bastante insolação e irradiação solar, indicando alto potencial de geração de energia solar para as regionais do estado.Palavras-chave: Eficiência Fotovoltaica; Radiação Solar; Temperatura da Célula Fotovoltaica; Irradiação.ABSTRACTSolar energy is obtained through photovoltaic solar panels with the function of capturing the sun's energy and transforming it into electrical energy, increasing the generation of solar energy in regions with greater capture of light energy. Thus, the parameters for the generation of photovoltaic solar energy in Acre, Brazil were analyzed. Data on insolation, maximum and minimum temperatures, precipitation and relative humidity were collected at the National Institute of Meteorology, solar irradiation, at the Reference Center for Solar and Wind Energy Sérgio de S. Brito, regions of Vale do Juruá and Vale do Acre, in the period 2015-2020. Analyzes were quantitative, using mean calculation and inclined plane calculation. When comparing the regions, Vale do Acre presented better results for solar energy generation and with an angle with the highest annual daily average of solar irradiation, considering the project of photovoltaic cells in the region. The work shows that Acre has a lot of insolation and solar irradiation, indicating a high potential for generating solar energy for the regional regions of the state.Keywords: Photovoltaic Efficiency; Solar Radiation; Photovoltaic Cell Temperature; Irradiation.RESUMENLa energía solar se obtiene a través de paneles solares fotovoltaicos con la función de captar la energía del sol y transformarla en energía eléctrica, aumentando la generación de energía solar en las regiones con mayor captación de energía luminosa. Así, se analizaron los parámetros para la generación de energía solar fotovoltaica en Acre, Brasil. Los datos sobre insolación, temperaturas máximas y mínimas, precipitación y humedad relativa fueron recolectados en el Instituto Nacional de Meteorología, irradiación solar, en el Centro de Referencia de Energía Solar y Eólica Sérgio de S. Brito, regiones de Vale do Juruá y Vale do Acre, en el período 2015-2020. Los análisis fueron cuantitativos, utilizando cálculo de medias y cálculo de plano inclinado. Al comparar las regiones, Vale do Acre presentó mejores resultados para la generación de energía solar y con un ángulo con el promedio diario anual más alto de irradiación solar, considerando el diseño de células fotovoltaicas en la región. El trabajo muestra que Acre tiene mucha insolación e irradiación solar, lo que indica un alto potencial de generación de energía solar para las regiones regionales del estado.Palabras clave: Eficiencia Fotovoltaica; Radiación Solar; Temperatura de la Celda Fotovoltaica; Irradiación.


2018 ◽  
Vol 10 (1) ◽  
pp. 1-10
Author(s):  
Dimas Juniyanto ◽  
Tatyantoro Andrasto ◽  
Suryono Suryono

The need for electrical energy continues to increase every time. Concerns about the depletion of fossil energy reserves encourage the acceleration of the development of renewable energy use. One of renewable energy is the solar energy. Due to the irreversible irradiation conditions, it takes controls to keep the solar panel's maximum power. The most widely in Maximum Power Point Tracking (MMPT) is Perturb Algorithm and Observe (P&O) but P&O Algorithm has deficiency of oscillations when steady state and MPP trace errors when irradiation changes rapidly. In this paper proposed P & O-Fuzzy algorithm is a modification of conventional P & O to improve the efficiency of solar panels. This research uses Matlab for simulation and hardware implementation using microcontroller Arduino Uno and buck converter topology. The result of simulation and hardware implementation, conventional P & O has an average efficiency of 85.03% while MPPT modification with P & O-Fuzzy algorithm can improve MPP tracking efficiency with 89.67%.


2019 ◽  
Vol 3 (1) ◽  
pp. 29-35
Author(s):  
M Barkah Salim ◽  
Nurlaila Rajabiah

The sun is a source of energy that cannot be used up. Therefore, the utilization of solar energy must be a priority. With the many types of solar panels that have been developed, researchers conducted an analysis of 150 watt monocrystalline solar panels. The purpose of this study is to know the amount of current and voltage produced by solar panels in some conditions of the sky, namely cloudy, bright cloudy, and bright. The research method used was the experiment. From the data that has been obtained, it can be found that the energy produced by solar panels during cloudy ranges from 0.6-0.8 amperes, when it is cloudy, 0.9-1.9 amperes, and when bright 2.0-3.2 amperes. The amount of electrical energy that can be produced is 8%. However, if the sunny state can produce twice that Suggestions for readers are if you want to take data to make sure the solar panels are completely exposed to the sun during data collection and in the open area. Much better if the angle is adjusted in the direction of sunlight.


Kilat ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 261-271
Author(s):  
Sugeng Purwanto

ABSTRACT Renewable energy is potential alternative energy to replace the central role of fossil energy which has been going on since the early 20th century. The solar power plant is alternative energy, especially for households and industry, and can be designed as a hybrid power plant consisting of solar panels, batteries, an automatic transfer switch (ATS), and a grid. This research will focus on developing ATS based on a microcontroller. It functions to regulate the load supply automatically from the three sources of electrical energy, like solar panels, batteries, and grid while the microcontroller functions to monitor the transfer of power from the solar power plant to grid and voltage movements in the system so that current and voltage data can be recorded from time to time to improve system reliability, effectiveness, and efficiency of the tool. ATS components consist of MCB, magnetic contactor, timer H3CR, relay, 2000VA inverter, solar charge controller 100A, NodeMCU ESP8266 IoT, and battery 12V 100AH. This research is conducted in one year to produce ATS based on a microcontroller that can automatically regulate the supply of loads from the three sources of electrical energy with a good level of efficiency and stability.  Keywords: solar power plants, hybrid power plants, an automatic transfer switch.  ABSTRAK Energi baru terbarukan merupakan energi alternatif yang potensial untuk menggantikan peran sentral dari energi fosil yang telah berlangsung sejak awal abad ke 20. PLTS merupakan salah satu energi alternatif penyedia energi listrik untuk rumah tangga dan industri serta dapat dirancang sebagai sistem pembangkit listrik tenaga hibrid (PLTH) yang terdiri dari panel surya, baterai, sistem pengaturan beban atau ATS (automatic transfer switch) dan jaringan PLN. Peneltian difokuskan pada pengembangan sistem ATS berbasiskan mikrokontroler. ATS berfungsi untuk mengatur suplai beban secara otomatis dari ketiga sumber energi listrik yaitu panel surya, baterai dan PLN sedangkan mikrokontroler berfungsi memonitor perpindahan daya dari PLTS ke sumber PLN dan pergerakan tegangan pada sistem sehingga dapat dilakukan pencatatan data arus dan tegangan dari waktu ke waktu sehingga dapat meningkatkan keandalan sistem, efektifitas dan efisiensi alat. Komponen ATS terdiri dari MCB, magnetic contactor, timer H3CR, relay, inverter 2000VA, solar charge controller 100A, NodeMCU ESP8266 IoT, dan baterai 12V 100Ah. Penelitian ini akan dilakukan dalam periode satu tahun menghasilkan ATS berbasiskan mikrokontroler yang dapat mengatur suplai beban secara otomatis dari ketiga sumber energi listrik dengan tingkat efisiensi dan kestabilan yang baik. Tim penelitian ini tediri dari 3 orang dan berasal dari program studi teknik elektro, IT PLN.  Kata kunci: pembangkit listrik tenaga surya, pembangkit listrik tenaga hibrid, pengaturan suplai beban.


2020 ◽  
Vol 9 (2) ◽  
pp. 125-134
Author(s):  
Kurnia Paranita Kartika ◽  
Riska Dhenabayu

This study aims to design a Solar Home System with an Arduino-based Smart Switching system so that the use of electrical energy generated by solar panels can be adjusted without adding power from other electricity sources, such as PLN. Calculation of Leveled Cost of Energy (LCOE) is used as the basis for the switching process that will be carried out to regulate the use of household appliances that are routinely used, regulate electricity consumption automatically, minimize usage, and calculate the effectiveness of electric power usage. The way SHS works is to collect electrical energy from sunlight, then convert DC voltage to AC so that it can be used to run household electronic equipment. To accommodate the adequacy of electrical power, an automatic adjustment is made for household appliances that are routinely used, namely house lights, which includes setting the lights on and off and the number of lights that can be activated. The advantage of this research is that the SHS system is integrated with the automatic setting of the lights installed in the house so that the number of lights on will adjust the availability of electrical energy in the battery. In addition, with the LCOE method, the level of usage can be calculated so that users can save electricity. From the results of usage testing, it is found that the application of this switching technology provides benefits for users because it is no longer dependent on PLN supply. From an economic point of view, based on the calculation of Leveled Cost of Energy (LCOE), there is a kWh value savings of Rp. 77, - for each kWh price or about 4.53% compared to purchasing electricity with prepaid mode.


Author(s):  
Naglaa Kamel Bahgaat ◽  
Nariman Abdel Salam ◽  
Monika Mady Roshdy ◽  
Sandy Abd Elrasheed Sakr

Rapid growth in mobile networks and the increase of the number of cellular base stations requires more energy sources, but the traditional sources of energy cause pollution and environmental problems. Therefore, modern facilities tend to use renewable energy sources instead of traditional sources. One renewable source is the photovoltaic panel, which made from semiconductor materials which absorb sunlight to generate electricity. This article discusses the importance of using solar panels to produce energy for mobile stations and also a solution to some environmental problems such as pollution. This article provides a design for a solar-power plant to feed the mobile station. Also, in this article is a prediction of all loads, the power consumed, the number of solar panels used, and solar batteries can be used to store electrical energy. Finally, an estimation of the costs of all components will be presented. Good discussion and conclusion will be presented about the results obtained. The results obtained are promising. In addition, a future plan is described to complete this important study.


2019 ◽  
Vol 11 (23) ◽  
pp. 6647 ◽  
Author(s):  
Suntiti Yoomak ◽  
Theerasak Patcharoen ◽  
Atthapol Ngaopitakkul

Solar rooftop systems in the residential sector have been rapidly increased in the term of installed capacity. There are various factors, such as climate, temperature, and solar radiation, that have effects on solar power generation efficiency. This paper presents a performance assessment of a solar system installed on the rooftop of residence in different regions of Thailand by using PSIM simulation. Solar rooftop installation comparison in different regions is carried out to evaluate the suitable location. In addition, three types of solar panels are used in research: monocrystalline, polycrystalline, and thin-film. The electrical parameters of real power and energy generated from the systems are investigated and analyzed. Furthermore, the economic evaluation of different solar rooftop system sizes using the monocrystalline module is investigated by using economic indicators of discounted payback period (DPP), net present value (NPV), internal rate of return (IRR), and profitability index (PI). Results show that the central region of Thailand is a suitable place for installing solar rooftop in terms of solar radiation, and the temperature has more solar power generation capacity than the other regions. The monocrystalline and polycrystalline solar panels can generate maximum power close to each other. All solar rooftop sizes with the Feed-in Tariff (FiT) scheme give the same DPP of 6.1 years, IRR of 15%, and PI of 2.57 which are better than the cases without the FiT scheme. However, a large-scale installation of solar rooftop systems can receive more electrical energy produced from the solar rooftop systems. As a result, the larger solar rooftop system sizes can achieve better economic satisfaction.


Sign in / Sign up

Export Citation Format

Share Document