scholarly journals Development of IoT based solution for monitoring & controlling of loads using Google Assistant with Home Security System

2020 ◽  
Author(s):  
M. Abdul Rahiman ◽  
D Manohar

The main aim of this project is to make a cost effective device which is used to monitor and control the loads by using simple voice commands. Previously we have ALEXA, SIRI & GOOGLE HOME which makes us more expensive. Even now when technology is handy enough only the well to do people of the society are blessed with these new smart home devices, as these devices costs are a bit high. However, not everyone is wealthy enough to be able to afford a human assistant, or some smart home kit. Hence, the need for finding an inexpensive and smart assistant for normal families keeps growing. This project proposes such inexpensive system. It uses the Google Assistant, the IFTTT application, the remoteme.org cloud application and the NodeMCU microcontroller as the major components along with a relay board comprising of 4 relays along with different sensors are working in this. Natural language voice is used to give commands to the Google Assistant All of the components are connected over the internet using Wi-Fi which puts this system under the IoT. And also we monitor data in this that is we using the different sensors like IR sensors, LDR (Light Emitting Diode) sensors etc; Not only to monitor and control the Loads but also providing the Security System to the Home, whenever the thief or the visitor enter into the room the owners will get push notification in their smart phone and also capturing the photos of visitors and uploaded to the Google Drive.

Author(s):  
Pamela Martinez-Vega ◽  
Araceli Lopez-Badillo ◽  
J. Luis Luviano-Ortiz ◽  
Abel Hernandez-Guerrero ◽  
Jaime G. Cervantes

Abstract The modern world progressively demands more energy; according to forecasts energy consumption will grow at an average annual rate of 3 percent. Therefore, it is necessary to purchase products or devices that are efficient and environmentally friendly. Technology in LED (Light Emitting Diode) lighting is presented as an alternative to energy saving, since LEDs have proven to be extremely efficient, have a long service life and their cost-effective ratio is very good. However, the heat emitted by the LED chip must be dissipated effectively, since the overheating of the chip reduces the efficiency and lifetime of the lamp. Therefore, heat sinks that are reliable, efficient and inexpensive should be designed and built. The present work proposes new designs for heat sinks in LED lamps, some of the models in the design of the fins refer to the Fibonacci series. The models proposed in the present work that have a significant advantage are the Type 1E Model (5.2% mass savings and better thermal efficiency of 8.33%), GR Type 1 Model (3.12% lighter and 3.33% more efficient) and the GRL Type Model (4. 51% mass savings and 5.55% thermally more efficient) compared to the Type 2 Reference Model proposed by Jang et al. [12].


Author(s):  
Paolo Visconti ◽  
Daniele Romanello ◽  
Giovanni Zizzari ◽  
Vito Ventura ◽  
Giorgio Cavalera

This work presents an electronic board for driving and control of High Intensity Discharge (HID) lamps and Light Emitting Diode (LED) lamps. The proposed electronic board is able to drive HID or LED lamps by means of a reconfigurable output. This feature allows using the ballast in lighting systems that currently use traditional discharge lamps, as well as keeping the same ballast when discharge lamps are replaced by LED modules in the near future, when LED street lighting systems will be more affordable. Additionally, since the lighting system is designed to be used in rural areas where there is no public electricity, each lighting point incorporates a system to convert solar energy into continuous voltage by means of photovoltaic panels. In this work, energy saving issues are taken into account.


1976 ◽  
Vol 20 (5) ◽  
pp. 141-144
Author(s):  
Andrew D. Le Cocq

Integrating human factors considerations into the design of a digital watch involved a number of factors relating to both display and control considerations. This paper discusses studies performed to determine specific display and control requirements during the design of the Texas Instruments Microelectronic Digital watch. These studies included Light Emitting Diode (LED) and display filter selection, automatic brightness dimming and operational procedures.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4861 ◽  
Author(s):  
Sumit Agrawal ◽  
Christopher Fadden ◽  
Ajay Dangi ◽  
Xinyi Yang ◽  
Hussain Albahrani ◽  
...  

Photoacoustic computed tomography (PACT) has been widely explored for non-ionizing functional and molecular imaging of humans and small animals. In order for light to penetrate deep inside tissue, a bulky and high-cost tunable laser is typically used. Light-emitting diodes (LEDs) have recently emerged as cost-effective and portable alternative illumination sources for photoacoustic imaging. In this study, we have developed a portable, low-cost, five-dimensional (x, y, z, t, λ ) PACT system using multi-wavelength LED excitation to enable similar functional and molecular imaging capabilities as standard tunable lasers. Four LED arrays and a linear ultrasound transducer detector array are housed in a hollow cylindrical geometry that rotates 360 degrees to allow multiple projections through the subject of interest placed inside the cylinder. The structural, functional, and molecular imaging capabilities of the LED–PACT system are validated using various tissue-mimicking phantom studies. The axial, lateral, and elevational resolutions of the system at 2.3 cm depth are estimated as 0.12 mm, 0.3 mm, and 2.1 mm, respectively. Spectrally unmixed photoacoustic contrasts from tubes filled with oxy- and deoxy-hemoglobin, indocyanine green, methylene blue, and melanin molecules demonstrate the multispectral molecular imaging capabilities of the system. Human-finger-mimicking phantoms made of a bone and blood tubes show structural and functional oxygen saturation imaging capabilities. Together, these results demonstrate the potential of the proposed LED-based, low-cost, portable PACT system for pre-clinical and clinical applications.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2951 ◽  
Author(s):  
Daniel Carreres-Prieto ◽  
Juan T. García ◽  
Fernando Cerdán-Cartagena ◽  
Juan Suardiaz-Muro

Local administrations demand real-time and continuous pollution monitoring in sewer networks. Spectroscopy is a non-destructive technique that can be used to continuously monitor quality in sewers. Covering a wide range of wavelengths can be useful for improving pollution characterization in wastewater. Cost-effective and in-sewer spectrophotometers would contribute to accomplishing discharge requirements. Nevertheless, most available spectrometers are based on incandescent lamps, which makes it unfeasible to place them in a sewerage network for real-time monitoring. This research work shows an innovative calibration procedure that allows (Light-Emitting Diode) LED technology to be used as a replacement for traditional incandescent lamps in the development of spectrophotometry equipment. This involves firstly obtaining transmittance values similar to those provided by incandescent lamps, without using any optical components. Secondly, this calibration process enables an increase in the range of wavelengths available (working range) through a better use of the LED’s spectral width, resulting in a significant reduction in the number of LEDs required. Thirdly, this method allows important reductions in costs, dimensions and consumptions to be achieved, making its implementation in a wide variety of environments possible.


2013 ◽  
Vol 805-806 ◽  
pp. 1856-1860
Author(s):  
Xiang Yu Sun ◽  
Ying Chun Zhang ◽  
Zuo Xun Wang ◽  
Tao Hao

Based on the existing LED (light emitting diode) chip waxing machine running in single-station serial mode, a multi-station LED chip waxing machine was designed which made creative improvements on the revolving platform of the waxing machine. Working efficiency was greatly increased with multi-station continuous parallel working mode. The control system used genetic algorithm-based PID (proportion integration differentiation) control to precisely control the revolving platform and all the manipulators, so that the waxing machine would carry out the fully automated assembly line work.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Dandan Yang ◽  
Xiaoying Wu ◽  
Wensheng Hou ◽  
Xiaolin Zheng ◽  
Jun Zheng ◽  
...  

This paper aims to investigate the effect of light emitting diode therapy (LEDT) on exercise-induced hand muscle fatigue by measuring the surface electromyography (sEMG) of flexor digitorum superficialis. Ten healthy volunteers were randomly placed in the equal sized LEDT group and control group. All subjects performed a sustained fatiguing isometric contraction with the combination of four fingertips except thumb at 30% of maximal voluntary contraction (MVC) until exhaustion. The active LEDT or an identical passive rest therapy was then applied to flexor digitorum superficialis. Each subject was required to perform a re-fatigue task immediately after therapy which was the same as the pre-fatigue task. Average rectified value (ARV) and fractal dimension (FD) of sEMG were calculated. ARV and FD were significantly different between active LEDT and passive rest groups at 20%–50%, 70%–80%, and 100% of normalized contraction time (P<0.05). Compared to passive rest, active LEDT induced significantly smaller increase in ARV values and decrease in FD values, which shows that LEDT is effective on the recovery of muscle fatigue. Our preliminary results also suggest that ARV and FD are potential replacements of biochemical markers to assess the effects of LEDT on muscle fatigue.


2011 ◽  
Vol 20 (02) ◽  
pp. 267-286
Author(s):  
STEVE WINDER

This paper outlines the various driving and control techniques for Light Emitting Diodes (LEDs). LEDs should be driven from a constant current source. High power LEDs are usually driven from a switching regulator, for reasons of efficiency. The types of drivers described include Buck (step-down), Boost (step-up) and Buck-Boost (step-up or step-down). Isolated drivers and Power Factor Correction (PFC) circuits are also described. This brief paper can only describe the basic outline of these circuits, but this should be sufficient to allow the basic principles to be understood.


2020 ◽  
Author(s):  
Jeeun Kang ◽  
Raymond C. Koehler ◽  
Shawn Adams ◽  
Ernest M. Graham ◽  
Emad M. Boctor

AbstractWe present a light-emitting diode (LED)-based transcranial photoacoustic measurement (LED-trPA) of oxyhemoglobin (HbO2) saturation at superior sagittal sinus (SSS) in hypoxic neonatal piglets. The optimal LED imaging wavelengths and frame averaging scheme were determined based on in vivo characterization of transcranial sensitivity. Based on the framework (690/850 nm with >20 frame averaging), graded hypoxia was successfully identified in neonatal piglets in vivo with less than 10.0 % of root mean squared error (RMSE). This preclinical study suggests the feasibility of a rapid, cost-effective, and safe LED-trPA monitoring of perinatal hypoxia-ischemia and prompt interventions for clinical use.


Sign in / Sign up

Export Citation Format

Share Document