scholarly journals Geological stories from the journey of mollusks fossils in Java

2021 ◽  
Vol 47 (3) ◽  
pp. 73-74
Author(s):  
Aswan Aswan

The journey began in the Eocene with the presence of mollusk fossil in the Nanggulan Formation (near Yogyakarta) in Central Java. Many experts believe this was the early part of the Tethys system which might still be connected to the Tethys system in Europe.The oldest mollusk fossils type locality after Nanggulan is the Early Miocene Jonggrangan Formation in Kulon Progo near the city of Yogyakarta, which is dominated by the gastropod Haustator specimen. Molluscan paleontological studies of this type of locality reflect a restricted environment with less influence of the Tethyan system. Haustator are considered as the ancestor of the Turritellidae group, which is found mostly on Java Island, during the younger Tertiary to Quaternary Periods.The story continued to the Middle Miocene where the Tethyan realms indication was clearly observed by the presence of some typical Tethys species such as Volema and Babylonia from Nyalindung Formation, West Java. The regional sea level rise in this epoch (around 12 Ma) that was indicated by the presence of Vicarya as an index fossil, which occurrence was due to land submerging to become mangroves area. The fossil then quickly become extinct when the sea level dropped back.Late Miocene to Pliocene was like the transition period from the Tethyan realm to the Pacific realm, where the Tethyan fauna was no longer present. Only evolutional traces of the Middle Miocene mollusk fossils were observed. This continuous evolution is most clearly seen in Turritella cramatensis (late Miocene), Turritella acuticarinata (early Pliocene) and Turritella cikumpaiensis (late Pliocene) which was interpreted to have originated from Turritella angulata as their ancestors.Earth cooling environment that happened in the late Pliocene/early Pleistocene has led the diversity and evolution of a new group of mollusks, most clearly observed from the abundance of Turritella bantamensis in the Bojong Formation, Banten. The new Turritella group has a curved whorl that different from its predecessor with an angled whorl shape.Plio-Pleistocene tectonics event has ended the period of Java marine mollusks domination, then only freshwater mollusk fossils can be found in almost all Quaternary mollusks-bearing deposits. 

2015 ◽  
Vol 28 (4) ◽  
pp. 1561-1577 ◽  
Author(s):  
Bo Qiu ◽  
Shuiming Chen ◽  
Lixin Wu ◽  
Shinichiro Kida

Abstract Regional sea level trend and variability in the Pacific Ocean have often been considered to be induced by low-frequency surface wind changes. This study demonstrates that significant sea level trend and variability can also be generated by eddy momentum flux forcing due to time-varying instability of the background oceanic circulation. Compared to the broad gyre-scale wind-forced variability, the eddy-forced sea level changes tend to have subgyre scales and, in the North Pacific Ocean, they are largely confined to the Kuroshio Extension region (30°–40°N, 140°–175°E) and the Subtropical Countercurrent (STCC) region (18°–28°N, 130°–175°E). Using a two-layer primitive equation model driven by the ECMWF wind stress data and the eddy momentum fluxes specified by the AVISO sea surface height anomaly data, the relative importance of the wind- and eddy-forced regional sea level trends in the past two decades is quantified. It is found that the increasing (decreasing) trend south (north) of the Kuroshio Extension is due to strengthening of the regional eddy forcing over the past two decades. On the other hand, the decreasing (increasing) sea level trend south (north) of the STCC is caused by the decadal weakening of the regional eddy momentum flux forcing. These decadal eddy momentum flux changes are caused by the background Kuroshio Extension and STCC changes in connection with the Pacific decadal oscillation (PDO) wind pattern shifting from a positive to a negative phase over the past two decades.


2021 ◽  
Vol 17 (1) ◽  
pp. 361-377
Author(s):  
Constantijn J. Berends ◽  
Bas de Boer ◽  
Roderik S. W. van de Wal

Abstract. Understanding the evolution of, and the interactions between, ice sheets and the global climate over geological timescales is important for being able to project their future evolution. However, direct observational evidence of past CO2 concentrations, and the implied radiative forcing, only exists for the past 800 000 years. Records of benthic δ18O date back millions of years but contain signals from both land ice volume and ocean temperature. In recent years, inverse forward modelling has been developed as a method to disentangle these two signals, resulting in mutually consistent reconstructions of ice volume, temperature, and CO2. We use this approach to force a hybrid ice-sheet–climate model with a benthic δ18O stack, reconstructing the evolution of the ice sheets, global mean sea level, and atmospheric CO2 during the late Pliocene and the Pleistocene, from 3.6 million years (Myr) ago to the present day. During the warmer-than-present climates of the late Pliocene, reconstructed CO2 varies widely, from 320–440 ppmv for warm periods to 235–250 ppmv for the early glacial excursion ∼3.3 million years ago. Sea level is relatively stable during this period, with maxima of 6–14 m and minima of 12–26 m during glacial episodes. Both CO2 and sea level are within the wide ranges of values covered by available proxy data for this period. Our results for the Pleistocene agree well with the ice-core CO2 record, as well as with different available sea-level proxy data. For the Early Pleistocene, 2.6–1.2 Myr ago, we simulate 40 kyr glacial cycles, with interglacial CO2 decreasing from 280–300 ppmv at the beginning of the Pleistocene to 250–280 ppmv just before the Mid-Pleistocene Transition (MPT). Peak glacial CO2 decreases from 220–250 to 205–225 ppmv during this period. After the MPT, when the glacial cycles change from 40 to 80 120 kyr cyclicity, the glacial–interglacial contrast increases, with interglacial CO2 varying between 250–320 ppmv and peak glacial values decreasing to 170–210 ppmv.


2001 ◽  
Vol 75 (3) ◽  
pp. 706-720 ◽  
Author(s):  
Alan G. Beu

Tonnoidean gastropods have planktotrophic larval lives of up to a year and are widely dispersed in ocean currents; the larvae maintain genetic exchange between adult populations. They therefore are expected to respond rapidly to new geographic barriers by either extinction or speciation. Fossil tonnoideans on the opposite coast of the Americas from their present-day range demonstrate that larval transport still was possible through Central America at the time of deposition of the fossils. Early Miocene occurrences of Cypraecassis tenuis (now eastern Pacific) in the Caribbean probably indicate that constriction of the Central American seaway had commenced by Middle Miocene time. Pliocene larval transport through the seaway is demonstrated by Bursa rugosa (now eastern Pacific) in Caribbean Miocene-latest Pliocene/Early Pleistocene rocks; Crossata ventricosa (eastern Pacific) in late Pliocene rocks of Atlantic Panama; Distorsio clathrata (western Atlantic) in middle Pliocene rocks of Ecuador; Cymatium wiegmanni (eastern Pacific) in middle Pliocene rocks of Atlantic Costa Rica; Sconsia sublaevigata (western Atlantic) in Pliocene rocks of Darien, Pacific Panama; and Distorsio constricta (eastern Pacific) in latest Pliocene-Early Pleistocene rocks of Atlantic Costa Rica. Continued Early or middle Pleistocene connections are demonstrated by Cymatium cingulatum (now Atlantic) in the Armuelles Formation of Pacific Panama. Tonnoideans indicate that the Central American seaway began to be constricted after early Miocene time, and some larval transport through the seaway was possible throughout Pliocene time. Intermittent marine connections were maintained at least during late Pliocene to early Pleistocene interglacial periods of high sea-level, and alternated with a land bridge during glacial periods of low sea-level.


2020 ◽  
Author(s):  
Constantijn J. Berends ◽  
Bas de Boer ◽  
Roderik S. W. van de Wal

Abstract. Understanding the evolution of, and the interactions between, ice sheets and the global climate over geological time is important for being able to constrain earth system sensitivity. However, direct observational evidence of past CO2 concentrations only exists for the past 800 000 years. Records of benthic δ18O date back millions of years, but contain signals from both land ice volume and ocean temperature. In recent years, inverse forward modelling has been developed as a method to disentangle these two signals, resulting in mutually consistent reconstructions of ice volume, temperature and CO2. We use this approach to force a hybrid ice-sheet – climate model with a benthic δ18O stack, reconstructing the evolution of the ice sheets, global mean sea level and atmospheric CO2 during the late Pliocene and the Pleistocene, from 3.6 million years (Myr) ago to the present day. During the warmer-than-present climates of the Late Pliocene, reconstructed CO2 varies widely, from 320–440 ppmv for warm periods such as Marine Isotope Stage (MIS) KM5c, to 235–250 ppmv for the MIS M2 glacial excursion. Sea level is relatively stable during this period, with a high stand of 6–14 m, and a drop of 12–26 m during MIS M2. Both CO2 and sea level are within the wide ranges of values covered by available proxy data for this period. Our results for the Pleistocene agree well with the ice-core CO2 record, as well as with different available sea-level proxy data. During the early Pleistocene, 2.6–1.2 Myr ago, we simulate 40 kyr glacial cycles, with interglacial CO2 decreasing from 280–300 ppmv at the beginning of the Pleistocene, to 250–280 ppmv just before the Mid-Pleistocene Transition (MPT). Peak glacial CO2 decreases from 220–250 ppmv to 205–225 ppmv during this period. After the MPT, when the glacial cycles change from 40 kyr to 80/120 kyr cyclicity, the glacial-interglacial contrast increases, with interglacial CO2 varying between 250–320 ppmv, and peak glacial values decreasing to 170–210 ppmv.


Ocean Science ◽  
2021 ◽  
Vol 17 (5) ◽  
pp. 1473-1487
Author(s):  
Patrick Wagner ◽  
Claus W. Böning

Abstract. Strong regional sea-level trends, mainly related to basin-wide wind stress anomalies, have been observed in the western tropical Pacific over the last 3 decades. Analyses of regional sea level in the densely populated regions of the neighbouring Australasian Mediterranean Sea (AMS; also called tropical Asian seas) are hindered by its complex topography and respective studies are sparse. We used a series of global eddy-permitting ocean models, including a high-resolution configuration that resolves the AMS with 120∘ horizontal resolution, forced by a comprehensive atmospheric forcing product over 1958–2016 to characterize the patterns and magnitude of decadal sea-level variability in the AMS. The nature of this variability is elucidated further by sensitivity experiments with interannual variability restricted to either the momentum or buoyancy fluxes, building on an experiment employing a repeated-year forcing without interannual variability in all forcing components. Our results suggest that decadal fluctuations of the El Niño–Southern Oscillation (ENSO) account for over 80 % of the variability in all deep basins of the region, except for the central South China Sea (SCS). Changes related to the Pacific Decadal Oscillation (PDO) are most pronounced in the shallow Arafura and Timor seas and in the central SCS. On average, buoyancy fluxes account for less than 10 % of decadal SSH variability, but this ratio is highly variable over time and can reach values of up to 50 %. In particular, our results suggest that buoyancy flux forcing amplifies the dominant wind-stress-driven anomalies related to ENSO cycles. Intrinsic variability is mostly negligible except in the SCS, where it accounts for 25 % of the total decadal SSH variability.


2015 ◽  
Vol 11 (5) ◽  
pp. 743-750 ◽  
Author(s):  
M. W. Strassburg ◽  
B. D. Hamlington ◽  
R. R. Leben ◽  
P. Manurung ◽  
J. Lumban Gaol ◽  
...  

Abstract. Southeast Asian seas span the largest archipelago in the global ocean and provide a complex oceanic pathway connecting the Pacific and Indian oceans. The Southeast Asian sea regional sea level trends are some of the highest observed in the modern satellite altimeter record that now spans almost 2 decades. Initial comparisons of global sea level reconstructions find that 17-year sea level trends over the past 60 years exhibit good agreement with decadal variability associated with the Pacific Decadal Oscillation and related fluctuations of trade winds in the region. The Southeast Asian sea region exhibits sea level trends that vary dramatically over the studied time period. This historical variation suggests that the strong regional sea level trends observed during the modern satellite altimeter record will abate as trade winds fluctuate on decadal and longer timescales. Furthermore, after removing the contribution of the Pacific Decadal Oscillation (PDO) to sea level trends in the past 20 years, the rate of sea level rise is greatly reduced in the Southeast Asian sea region. As a result of the influence of the PDO, the Southeast Asian sea regional sea level trends during the 2010s and 2020s are likely to be less than the global mean sea level (GMSL) trend if the observed oscillations in wind forcing and sea level persist. Nevertheless, long-term sea level trends in the Southeast Asian seas will continue to be affected by GMSL rise occurring now and in the future.


2012 ◽  
Vol 35 (sup1) ◽  
pp. 98-117 ◽  
Author(s):  
B. D. Hamlington ◽  
R. R. Leben ◽  
L. A. Wright ◽  
K. -Y. Kim

2014 ◽  
Vol 10 (5) ◽  
pp. 4129-4148 ◽  
Author(s):  
M. W. Strassburg ◽  
B. D. Hamlington ◽  
R. R. Leben ◽  
P. Manurung ◽  
J. Lumban Gaol ◽  
...  

Abstract. Southeast Asian Seas (SEAS) span the largest archipelago in the global ocean and provide a complex oceanic pathway connecting the Pacific and Indian Oceans. The SEAS regional sea level trends are some of the highest observed in the modern satellite altimeter record that now spans almost two decades. Initial comparisons of global sea level reconstructions find that 17 year sea level trends over the past 60 years exhibit good agreement in areas and at times of strong signal to noise associated decadal variability forced by low frequency variations in Pacific trade winds. The SEAS region exhibits sea level trends that vary dramatically over the studied time period. This historical variation suggests that the strong regional sea level trends observed during the modern satellite altimeter record will abate as trade winds fluctuate on decadal and longer time scales. Furthermore, after removing the contribution of the Pacific Decadal Oscillation (PDO) to sea level trends in the past twenty years, the rate of sea level rise is greatly reduced in the SEAS region. As a result of the influence of the PDO, the SEAS regional sea level trends during 2010s and 2020s are likely to be less than the global mean sea level (GMSL) trend if the observed oscillations in wind forcing and sea level persist. Nevertheless, long-term sea level trends in the SEAS will continue to be affected by GMSL rise occurring now and in the future.


1984 ◽  
Vol 21 (3) ◽  
pp. 317-325 ◽  
Author(s):  
Dean A. McManus ◽  
Joe S. Creager

Sea-level changes in Beringia are especially significant because they affect the migration of land plants and animals between Asia and North America, and marine plants and animals between the Pacific and Arctic oceans. Previous studies of cores from the Bering and Chukchi shelves produced sea-level curves. Evaluation of these data suggests that nine of the radiocarbon-dated estimates of sea-level position are most reliable for the time period 19,000 to 10,000 yr B.P. The trend of these nine points is proposed as the basis for a regional sea-level curve for central Beringia. Constraints on the data must be noted, however, by anyone using them.


Sign in / Sign up

Export Citation Format

Share Document