scholarly journals Treatment with Candida albicans biotherapic influences in vitro fungal adhesion to Ma-104 cells

2021 ◽  
Vol 10 (36) ◽  
pp. 152-154
Author(s):  
Beatriz Guerreiro Basílio Costa ◽  
Camila Monteiro Siqueira ◽  
Gleyce Moreno Barbosa ◽  
Venicio Feo Da Veiga ◽  
Maristela Barbosa Portela ◽  
...  

Background: Oral candidiasis is an opportunist fungal infection in humans, mainly caused by Candida albicans. It occurs when the host presents an imbalance in the immune system and Candida spp., normally found in human flora, become able to develop the infection [1]. This disease is very common in HIV patients, and in all individuals that present immunossupression, such as patients treated with chemotherapy. Considering this scenario, the development of new medicines to treat oral candidiasis is mandatory. Aims: The aim of this study was to evaluate citotoxicity, morphology and quantify the adhesion rates of C. albicans to biotherapic-treated Ma104 cells. Methodology: The biotherapic was prepared following the Roberto Costa technique and Brazilian Homeopathic Pharmacopeia protocol [2]. Briefly, biotherapic 1X was prepared with 1 mL of aqueous solution containing 108 yeasts of living Candida albicans plus 9 ml of sterile distilled water. This solution was submmited to 100 mechanical succussions. Biotherapic 2X was obtained after addition of 1 ml of 1X solution in 9 ml of sterile distilled water and it was also submitted to 100 mechanical succussions. This procedure was repeated until biotherapic 30X was obtained. As a control, sterile dynamized water (30X) was used. The inhibition of fungal growth induced by biotherapic was evaluated by MTT method after 24 hours of treatment. The morphological aspects of Ma104-biotherapic-treated cells were analyzed by Giemsa staining after 5, 10 and 60 days, and compared with control groups (water 30X and untreated cells). Additionally, Ma104 cells were treated during 5 and 30 days with biotherapic in parallel with respective controls, and the index adhesion of yeast cells was quantified. Results: The biotherapic was not able to reduce the viability of treated C. albicans when compared with controls. On the other hand, Ma104 treated cells presented important morphological alterations after 60 days, such as: cytoplasmic vacuoles, halos around the nucleolus and elongation of the plasmatic membrane. These changes were not observed in ,untreated cells nor in ones treated with water 30X. The adhesion index to Ma104 cells was reduced around 27% after 5 and 30 days of treatment when compared to controls. Conclusion: These results showed that the biotherapic did not present any citotoxicity, but was able to modify the morphological aspects of Ma-104 cells. Additionally, the interaction between host cells and ethilogic agent is directly influenced by biotherapic treatment, suggesting a promising antifungal potential of this medicine.

1981 ◽  
Vol 27 (11) ◽  
pp. 1156-1164 ◽  
Author(s):  
Thomas J. Marrie ◽  
J. William Costerton

Scrapings of Candida albicans plaques from the tongue and buccal mucosa of patients with oral candidiasis were examined electron microscopy. In addition, urine sediment from patients with infection of their catheterized urinary tracts was similar examined. Three types of C. albicans – oral epithelial cell interactions were noted: a loose adherence apparently mediated by ruthenium red positive matrix, a "tight" adherence where no space could be seen between the host and yeast cell, and invasions host cells by yeast hyphal elements. Adhesion of Candida blastospores to hyphal elements and adhesion of bacteria to Candida cells was also frequently observed.Urine sediments from patients with mixed bacteria–yeast infections demonstrated adhesion of the bacteria to the yeast cells. This phenomenon was also demonstrated in in vitro experiments and fibrous ruthenium red material invariably occupied the zo*** of adhesion.Phagocytosis of yeast by polymorphonuclear leukocytes was found in urinary, but not in oral, candidiasis. Our in vivo and vitro observations indicate that a ruthenium red positive matrix covers the surfaces involved in the yeast to yeast, yeast to ho and yeast to bacteria adhesion.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 998
Author(s):  
Virgínia Barreto Lordello ◽  
Andréia Bagliotti Meneguin ◽  
Sarah Raquel de Annunzio ◽  
Maria Pía Taranto ◽  
Marlus Chorilli ◽  
...  

Background: Probiotic bacteria have been emerging as a trustworthy choice for the prevention and treatment of Candida spp. infections. This study aimed to develop and characterize an orodispersible film (ODF) for delivering the potentially probiotic Enterococcus faecium CRL 183 into the oral cavity, evaluating its in vitro antifungal activity against Candida albicans. Methods and Results: The ODF was composed by carboxymethylcellulose, gelatin, and potato starch, and its physical, chemical, and mechanical properties were studied. The probiotic resistance and viability during processing and storage were evaluated as well as its in vitro antifungal activity against C. albicans. The ODFs were thin, resistant, and flexible, with neutral pH and microbiologically safe. The probiotic resisted the ODF obtaining process, demonstrating high viability (>9 log10 CFU·g−1), up to 90 days of storage at room temperature. The Probiotic Film promoted 68.9% of reduction in fungal early biofilm and 91.2% in its mature biofilm compared to the group stimulated with the control film. Those results were confirmed through SEM images. Conclusion: The probiotic ODF developed is a promising strategy to prevent oral candidiasis, since it permits the local probiotic delivery, which in turn was able to reduce C. albicans biofilm formation.


Author(s):  
Oluwole Moses David ◽  
Margaret Olutayo Alese ◽  
Tobi Oyewole ◽  
Oluwole Ojo Alese ◽  
Adekunle Adegbuyi ◽  
...  

Background: Oral infection caused by Candida spp. is a major healthcare problem in dental and oral care. Treatment failure has been reported in cases of oral candidiasis as a result of resistance to common antifungals. Aim and Objective: In this study, the in vitro and in vivo activities of extract of Tithonia diversifolia against virulence factor-borne and antifungal resistant-Candida albicans were investigated. Candida albicans was isolated from the saliva of patients attending a tertiary hospital in Ekiti State. Methodology: Standard methods were used to determine the presence of virulence factors in the isolates. In vitro and in vivo anti-candidal activities of the hydro-ethanolic extract of T. diversifolia were also tested on the test fungus. Results: The virulence factors have varying percentage of occurrence in all the isolates with catalase having the highest. Itraconazole and nystatin were not effective against the isolates. Out of the six isolates selected (based on antifungal resistance) only three produced strong biofilm. The reduction in the population of the test organisms by the extract was time and concentration dependent. At the end of candidal challenge and treatment assays, extract of T. diversifolia has lower anti-candidal property compared to nystatin. Conclusion: This study has shown that C. albicans associated with the mouth carries virulence factors and are resistant to common antifungals. In this work, we noticed antifungal effects of hydro-alcoholic extract of T. diversifolia on C. albicans associated with oral infections.


2017 ◽  
Vol 74 (11) ◽  
pp. 1066-1070 ◽  
Author(s):  
Irena Glazar ◽  
Jelena Prpic ◽  
Miranda Muhvic-Urek ◽  
Sonja Pezelj-Ribaric

Background/Aim. Oral candidiasis frequently causes discomfort in patients treated for malignant diseases, acting as well as a potential source of systemic infection. This disease may present itself through different clinical manifestations of both acute or chronic type. The aim of this study was to identify different Candida species from oral cavities of patients suffering from malignant diseases. Methods. Thirty patients admitted to the hospital for diagnostics/treatment of malignant diseases were included in this investigation. All subjects had visible changes of oral mucosa in the form of pseudomembranes and inflammation corresponding to oral candidiasis. Control group included 30 non-hospitalized patients diagnosed with candidiasis. Diagnosis of oral candidiasis was confirmed in all patients by microbiological analysis of tongue swabs. For microbiota identification, three different tests were used: germination test, fungal growth test on corn meal agar, and biochemical identification with commercially available ID 32 C kit (bio-Merieux, Marcy-l?Etoile, France). Results. Out of 30 isolates collected from hospitalized patients, 90% was related to Candida albicans, 7% was identified as Candida kefyr, and 3% as Candida famata. In samples collected from non-hospitalized controls, we isolated Candida albicans in 90% of the cases, in 7% Candida kefyr, while in 3% we identified Candida glabrata. Conclusion. Based on this investigation, oral candidiasis in patients treated with radiotherapy and chemotherapy is mainly caused by Candida albicans. It is to be expected that Candida albicans will remain the most significant causative agent of oral candidasis, although we must bear in mind the possibility of other pathogenic species.


2016 ◽  
Vol 60 (4) ◽  
pp. 2185-2194 ◽  
Author(s):  
Mohammed S. Ahmadi ◽  
Hiu Ham Lee ◽  
David A. Sanchez ◽  
Adam J. Friedman ◽  
Moses T. Tar ◽  
...  

ABSTRACTCandida albicansis a leading nosocomial pathogen. Today, candidal biofilms are a significant cause of catheter infections, and such infections are becoming increasingly responsible for the failure of medical-implanted devices.C. albicansforms biofilms in which fungal cells are encased in an autoproduced extracellular polysaccharide matrix. Consequently, the enclosed fungi are protected from antimicrobial agents and host cells, providing a unique niche conducive to robust microbial growth and a harbor for recurring infections. Here we demonstrate that a recently developed platform comprised of nanoparticles that release therapeutic levels of nitric oxide (NO-np) inhibits candidal biofilm formation, destroys the extracellular polysaccharide matrices of mature fungal biofilms, and hinders biofilm development on surface biomaterials such as the lumen of catheters. We found NO-np to decrease both the metabolic activity of biofilms and the cell viability ofC. albicansin vitroandin vivo. Furthermore, flow cytometric analysis found NO-np to induce apoptosis in biofilm yeast cellsin vitro. Moreover, NO-np behave synergistically when used in combination with established antifungal drug therapies. Here we propose NO-np as a novel treatment modality, especially in combination with standard antifungals, for the prevention and/or remediation of fungal biofilms on central venous catheters and other medical devices.


Microbiology ◽  
2010 ◽  
Vol 156 (12) ◽  
pp. 3645-3659 ◽  
Author(s):  
David A. Coleman ◽  
Soon-Hwan Oh ◽  
Xiaomin Zhao ◽  
Lois L. Hoyer

Despite an abundance of data describing expression of genes in the Candida albicans ALS (agglutinin-like sequence) gene family, little is known about the production of Als proteins on individual cells, their spatial localization or stability. Als proteins are most commonly discussed with respect to function in adhesion of C. albicans to host and abiotic surfaces. Development of a mAb specific for Als1, one of the eight large glycoproteins encoded by the ALS family, provided the opportunity to detect Als1 during growth of yeast and hyphae, both in vitro and in vivo, and to demonstrate the utility of the mAb in blocking C. albicans adhesion to host cells. Although most C. albicans yeast cells in a saturated culture are Als1-negative by indirect immunofluorescence, Als1 is detected on the surface of nearly all cells shortly after transfer into fresh growth medium. Als1 covers the yeast cell surface, with the exception of bud scars. Daughters of the inoculum cells, and sometimes granddaughters, also have detectable Als1, but Als1 is not detectable on cells from subsequent generations. On germ tubes and hyphae, most Als1 is localized proximal to the mother yeast. Once deposited on yeasts or hyphae, Als1 persists long after the culture has reached saturation. Growth stage-dependent production of Als1, coupled with its persistence on the cell surface, results in a heterogeneous population of cells within a C. albicans culture. Anti-Als1 immunolabelling patterns vary depending on the source of the C. albicans cells, with obvious differences between cells recovered from culture and those from a murine model of disseminated candidiasis. Results from this work highlight the temporal parallels for ALS1 expression and Als1 production in yeasts and germ tubes, the specialized spatial localization and persistence of Als1 on the C. albicans cell surface, and the differences in Als1 localization that occur in vitro and in vivo.


2017 ◽  
Vol 78 (2) ◽  
pp. 368-374 ◽  
Author(s):  
I. J. Dias ◽  
E. R. I. S. Trajano ◽  
R. D. Castro ◽  
G. L. S. Ferreira ◽  
H. C. M. Medeiros ◽  
...  

Abstract This study analyzed the antifungal activity of phytoconstituents from linalool on Candida spp. strains, in vitro, isolated from patients with clinical diagnoses of oral candidiasis associated with the use of a dental prosthesis. Biological samples were collected from 12 patients using complete dentures or removable partial dentures and who presented mucous with diffuse erythematous or stippled features, indicating a clinical diagnosis of candidiasis. To identify fungal colonies of the genus Candida, samples were plated onto CHROMagar Candida®. The antifungal activity of linalool, a monoterpene unsaturated constituent of basil oil, was performed using the broth microdilution technique. Then, the minimum inhibitory concentration (MIC), the two subsequent stronger concentrations and the positive controls were subcultured on Sabouraud Dextrose Agar plates to determine the minimum fungicidal concentration (MFC). The experiments were performed in triplicate and nystatin was used as a positive control in all tests. Diagnoses of oral candidiasis were verified in eight patients (66.6%) and the most prevalent fungal species was Candida albicans (37.5%), followed by Candida krusei (25.0%); and Candida tropicalis (4.2%). The best antifungal activity of linalool was observed on Candida tropicalis (MIC = 500 mg/mL), followed by Candida albicans (MIC = 1.000 mg/mL), and Candida krusei (MIC = 2.000 mg/mL).Under the study conditions and based on the results obtained, it can be concluded that the Candida strains tested were susceptible to linalool.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 349
Author(s):  
Rafał Wiench ◽  
Dariusz Skaba ◽  
Jacek Matys ◽  
Kinga Grzech-Leśniak

The effectiveness of antimicrobial photodynamic therapy (aPDT) in the treatment of oral yeast infections was examined many times in recent years. The authors of this review tried to address the question: “Should TBO (toluidine blue ortho)-mediated aPDT be considered a possible alternative treatment for oral candidiasis?”. PubMed/Medline and the Cochrane Central Register of Controlled Trials (CEN-TRAL) databases were searched from 1997 up to the 27th of October 2020 using a combination of the following keywords: (Candida OR Candidiasis oral OR Candidosis oral OR denture stomatitis) AND (toluidine blue OR photodynamic therapy OR aPDT OR photodynamic antimicrobial chemotherapy OR PACT OR photodynamic inactivation OR PDI). Animal studies or in vitro studies involving Candida albicans (C. albicans) and/or nonalbicans stain, randomized clinical trials (RCT) involving patients with oral candidiasis or denture stomatitis published solely in English language were included. Candida elimination method in animal, in vitro studies and RCT used was TBO-mediated aPDT. Exactly 393 studies were taken into consideration. Then, after analyzing titles and abstracts of said studies, 361 were excluded. Only 32 studies ended up being selected for in-depth screening, after which 21 of them were included in this study. All studies reported the antifungal effectiveness of aPDT with TBO against C. albicans and non-albicans Candida. In studies conducted with planktonic cells, only one study showed eradication of C. albicans. All others showed partial elimination and only one of them was not statistically significant. Experiments on yeast biofilms, in all cases, showed partial, statistically significant cell growth inhibition and weight reduction (a reduction in the number of cells—mainly hyphae) and the mass of extracellular polymeric substance (EPS). In vivo aPDT mediated by TBO exhibits antifungal effects against oral Candida spp.; however, its clinical effectiveness as a potent therapeutic strategy for oral yeast infections requires further investigation.


Sign in / Sign up

Export Citation Format

Share Document