scholarly journals Identification of genomic regions and candidate genes of functional importance for gastrointestinal parasite resistance traits in Djallonké sheep of Burkina Faso

2019 ◽  
Vol 62 (1) ◽  
pp. 313-323
Author(s):  
Isabel Álvarez ◽  
Iván Fernández ◽  
Albert Soudré ◽  
Amadou Traoré ◽  
Lucía Pérez-Pardal ◽  
...  

Abstract. A total of 184 Djallonké lambs from Burkina Faso with phenotypes for packed-cell volume (PCV), log-transformed fecal egg count (lnFEC), and FAffa MAlan CHArt (FAMACHA©) eye scores were typed with the OvineSNP50 BeadChip of Illumina to contribute to the knowledge of the genetic basis of gastrointestinal (GIN) parasite resistance in sheep. Association analysis identified a total of 22 single-nucleotide polymorphisms (SNPs) related with PCV (6 SNPs), lnFEC (7), and FAMACHA scores (9) distributed among 14 Ovis aries chromosomes (OAR). The identified SNPs accounted for 18.76 % of the phenotypic variance for PCV, 21.24 % for lnFEC, and 34.38 % for FAMACHA scores. Analyses pointed out the importance of OAR2 for PCV, OAR3 for FAMACHA scores, and OAR6 for lnFEC. The 125 kb regions surrounding the identified SNPs overlapped with seven previously reported quantitative trait loci (QTLs) for the traits analyzed in the current work. The only chromosome harboring markers associated with the three traits studied was OAR2. In agreement with the literature, two different chromosomal areas on OAR2 can play a major role in the traits studied. Gene-annotation enrichment analysis allowed us to identify a total of 34 potential candidate genes for PCV (6 genes), lnFEC (4), and FAMACHA scores (24). Annotation analysis allowed us to identify one functional term cluster with a significant enrichment score (1.302). The cluster included five genes (TRIB3, CDK4, CSNK2A1, MARK1, and SPATA5) involved in immunity-related and cell-proliferation processes. Furthermore, this research suggests that the MBL2 gene can underlie a previously reported QTL for immunoglobulin A levels on OAR22 and confirms the importance of genes involved in growth and size (such as the ADAMTS17 gene on OAR18) for GIN resistance traits. Since association studies for the ascertainment of the genetic basis of GIN resistance may be affected by genotype–environment interactions, obtaining information from local sheep populations managed in harsh environments contributes to the identification of novel genomic areas of functional importance for GIN resistance for that trait.

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5189 ◽  
Author(s):  
Brian M. Carlson ◽  
Ian B. Klingler ◽  
Bradley J. Meyer ◽  
Joshua B. Gross

Animal models provide useful tools for exploring the genetic basis of morphological, physiological and behavioral phenotypes. Cave-adapted species are particularly powerful models for a broad array of phenotypic changes with evolutionary, developmental and clinical relevance. Here, we explored the genetic underpinnings of previously characterized differences in locomotor activity patterns between the surface-dwelling and Pachón cave-dwelling populations ofAstyanax mexicanus.We identified multiple novel QTL underlying patterns in overall levels of activity (velocity), as well as spatial tank use (time spent near the top or bottom of the tank). Further, we demonstrated that different regions of the genome mediate distinct patterns in velocity and tank usage. We interrogated eight genomic intervals underlying these activity QTL distributed across six linkage groups. In addition, we employed transcriptomic data and draft genomic resources to generate and evaluate a list of 36 potential candidate genes. Interestingly, our data support the candidacy of a number of genes, but do not suggest that differences in the patterns of behavior observed here are the result of alterations to certain candidate genes described in other species (e.g., teleost multiple tissue opsins, melanopsins or members of the core circadian clockwork). This study expands our knowledge of the genetic architecture underlying activity differences in surface and cavefish. Future studies will help define the role of specific genes in shaping complex behavioral phenotypes inAstyanaxand other vertebrate taxa.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 773 ◽  
Author(s):  
Wang ◽  
Wei ◽  
Li ◽  
Wang ◽  
Ge ◽  
...  

Root system plays an essential role in water and nutrient acquisition in plants. Understanding the genetic basis of root development will be beneficial for breeding new cultivars with efficient root system to enhance resource use efficiency in maize. Here, the natural variation of 13 root and 3 shoot traits was evaluated in 297 maize inbred lines and genome-wide association mapping was conducted to identify SNPs associated with target traits. All measured traits exhibited 2.02- to 21.36-fold variations. A total of 34 quantitative trait loci (QTLs) were detected for 13 traits, and each individual QTL explained 5.7% to 15.9% of the phenotypic variance. Three pleiotropic QTLs involving five root traits were identified; SNP_2_104416607 was associated with lateral root length (LRL), root surface area (RA), root length between 0 and 0.5mm in diameter (RL005), and total root length (TRL); SNP_2_184016997 was associated with RV and RA, and SNP_4_168917747 was associated with LRL, RA and TRL. The expression levels of candidate genes in root QTLs were evaluated by RNA-seq among three long-root lines and three short-root lines. A total of five genes that showed differential expression between the long- and short-root lines were identified as promising candidate genes for the target traits. These QTLs and the potential candidate genes are important source data to understand root development and genetic improvement of root traits in maize.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaoli Zhang ◽  
Wentao Ding ◽  
Dong Xue ◽  
Xiangnan Li ◽  
Yang Zhou ◽  
...  

Abstract Background Plant architecture-related traits (e.g., plant height (PH), number of nodes on main stem (NN), branch number (BN) and stem diameter (DI)) and 100-seed weight (100-SW) are important agronomic traits and are closely related to soybean yield. However, the genetic basis and breeding potential of these important agronomic traits remain largely ambiguous in soybean (Glycine max (L.) Merr.). Results In this study, we collected 133 soybean landraces from China, phenotyped them in two years at two locations for the above five traits and conducted a genome-wide association study (GWAS) using 82,187 single nucleotide polymorphisms (SNPs). As a result, we found that a total of 59 SNPs were repeatedly detected in at least two environments. There were 12, 12, 4, 4 and 27 SNPs associated with PH, NN, BN, DI and 100-SW, respectively. Among these markers, seven SNPs (AX-90380587, AX-90406013, AX-90387160, AX-90317160, AX-90449770, AX-90460927 and AX-90520043) were large-effect markers for PH, NN, BN, DI and 100-SW, and 15 potential candidate genes were predicted to be in linkage disequilibrium (LD) decay distance or LD block. In addition, real-time quantitative PCR (qRT-PCR) analysis was performed on four 100-SW potential candidate genes, three of them showed significantly different expression levels between the extreme materials at the seed development stage. Therefore, Glyma.05 g127900, Glyma.05 g128000 and Glyma.05 g129000 were considered as candidate genes with 100-SW in soybean. Conclusions These findings shed light on the genetic basis of plant architecture-related traits and 100-SW in soybean, and candidate genes could be used for further positional cloning.


2006 ◽  
Vol 43 (2) ◽  
pp. 155-159 ◽  
Author(s):  
Linda P. Jakobsen ◽  
Mary A. Knudsen ◽  
James Lespinasse ◽  
Carmen García Ayuso ◽  
Carmen Ramos ◽  
...  

Objective The Pierre Robin Sequence (PRS) is subgroup of the cleft palate population. As with the etiology of cleft lip or palate, the etiology of PRS is generally unknown. Some factors are suggestive of a genetic basis for PRS. The purpose of this study was to compare genetic information on PRS available in the literature and in a cytogenetic database to facilitate focused genetic studies of PRS. Design After searching Medline for “pierre robin and genetics,” the Mendelian Cytogenetics Network database for “robin” and “pierre robin,” and two reviews from the Human Cytogenetics Database for “cleft palate” and “micrognathia,” a comparison of the data and a search in Online Mendelian Inheritance in Man (OMIM) Gene Map was performed to identify relevant candidate genes. Results The findings revealed consistency to a certain degree to loci 2q24.1-33.3, 4q32-qter, 11q21-23.1, and 17q21-24.3. A search in the OMIM Gene Map provided many candidate genes for PRS in these regions. The GAD67 on 2q31, the PVRL1 on 11q23-q24, and the SOX9 gene on 17q24.3-q25.1 are suggested to be of particular importance. Conclusion Candidate loci and a few potential candidate genes for PRS are proposed from the present study. This may enable researchers to focus their effort in the studies of PRS.


2019 ◽  
Vol 97 (10) ◽  
pp. 4066-4075
Author(s):  
Duy Ngoc Do ◽  
Nathalie Bissonnette ◽  
Pierre Lacasse ◽  
Filippo Miglior ◽  
Xin Zhao ◽  
...  

Abstract Lactation persistency (LP), defined as the ability of a cow to maintain milk production at a high level after milk peak, is an important phenotype for the dairy industry. In this study, we used a targeted genotyping approach to scan for potentially functional single nucleotide polymorphisms (SNPs) within 57 potential candidate genes derived from our previous genome wide association study on LP and from the literature. A total of 175,490 SNPs were annotated within 10-kb flanking regions of the selected candidate genes. After applying several filtering steps, a total of 105 SNPs were retained for genotyping using target genotyping arrays. SNP association analyses were performed in 1,231 Holstein cows with 69 polymorphic SNPs using the univariate liner mixed model with polygenic effects using DMU package. Six SNPs including rs43770847, rs208794152, and rs208332214 in ADRM1; rs209443540 in C5orf34; rs378943586 in DDX11; and rs385640152 in GHR were suggestively significantly associated with LP based on additive effects and associations with 4 of them (rs43770847, rs208794152, rs208332214, and rs209443540) were based on dominance effects at P < 0.05. However, none of the associations remained significant at false discovery rate adjusted P (FDR) < 0.05. The additive variances explained by each suggestively significantly associated SNP ranged from 0.15% (rs43770847 in ADRM1) to 5.69% (rs209443540 in C5orf34), suggesting that these SNPs might be used in genetic selection for enhanced LP. The percentage of phenotypic variance explained by dominance effect ranged from 0.24% to 1.35% which suggests that genetic selection for enhanced LP might be more efficient by inclusion of dominance effects. Overall, this study identified several potentially functional variants that might be useful for selection programs for higher LP. Finally, a combination of identification of potentially functional variants followed by targeted genotyping and association analysis is a cost-effective approach for increasing the power of genetic association studies.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1962
Author(s):  
Avinash Karn ◽  
Luis Diaz-Garcia ◽  
Noam Reshef ◽  
Cheng Zou ◽  
David C. Manns ◽  
...  

Hydroxycinnamylated anthocyanins (or simply ‘acylated anthocyanins’) increase color stability in grape products, such as wine. Several genes that are relevant for anthocyanin acylation in grapes have been previously described; however, control of the degree of acylation in grapes is complicated by the lack of genetic markers quantitatively associated with this trait. To characterize the genetic basis of anthocyanin acylation in grapevine, we analyzed the acylation ratio in two closely related biparental families, Vitis rupestris B38 × ‘Horizon’ and ‘Horizon’ × Illinois 547-1, for 2 and 3 years, respectively. The acylation ratio followed a bimodal and skewed distribution in both families, with repeatability estimates larger than 0.84. Quantitative trait locus (QTL) mapping with amplicon-based markers (rhAmpSeq) identified a strong QTL from ‘Horizon’ on chromosome 3, near 15.85 Mb in both families and across years, explaining up to 85.2% of the phenotypic variance. Multiple candidate genes were identified in the 14.85–17.95 Mb interval, in particular, three copies of a gene encoding an acetyl-CoA-benzylalcohol acetyltransferase-like protein within the two most strongly associated markers. Additional population-specific QTLs were found in chromosomes 9, 10, 15, and 16; however, no candidate genes were described. The rhAmpSeq markers reported here, which were previously shown to be highly transferable among the Vitis genus, could be immediately implemented in current grapevine breeding efforts to control the degree of anthocyanin acylation and improve the quality of grapes and their products.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mangesh P. Jadhav ◽  
Sunil S. Gangurde ◽  
Anil A. Hake ◽  
Arati Yadawad ◽  
Supriya S. Mahadevaiah ◽  
...  

With an objective of identifying the genomic regions for productivity and quality traits in peanut, a recombinant inbred line (RIL) population developed from an elite variety, TMV 2 and its ethyl methane sulfonate (EMS)-derived mutant was phenotyped over six seasons and genotyped with genotyping-by-sequencing (GBS), Arachis hypogaea transposable element (AhTE) and simple sequence repeats (SSR) markers. The genetic map with 700 markers spanning 2,438.1 cM was employed for quantitative trait loci (QTL) analysis which identified a total of 47 main-effect QTLs for the productivity and oil quality traits with the phenotypic variance explained (PVE) of 10–52% over the seasons. A common QTL region (46.7–50.1 cM) on Ah02 was identified for the multiple traits, such as a number of pods per plant (NPPP), pod weight per plant (PWPP), shelling percentage (SP), and test weight (TW). Similarly, a QTL (7.1–18.0 cM) on Ah16 was identified for both SP and protein content (PC). Epistatic QTL (epiQTL) analysis revealed intra- and inter-chromosomal interactions for the main-effect QTLs and other genomic regions governing these productivity traits. The markers identified by a single marker analysis (SMA) mapped to the QTL regions for most of the traits. Among the five potential candidate genes identified for PC, SP and oil quality, two genes (Arahy.7A57YA and Arahy.CH9B83) were affected by AhMITE1 transposition, and three genes (Arahy.J5SZ1I, Arahy.MZJT69, and Arahy.X7PJ8H) involved functional single nucleotide polymorphisms (SNPs). With major and consistent effects, the genomic regions, candidate genes, and the associated markers identified in this study would provide an opportunity for gene cloning and genomics-assisted breeding for increasing the productivity and enhancing the quality of peanut.


2022 ◽  
Vol 54 (1) ◽  
Author(s):  
Sara Casu ◽  
Mario Graziano Usai ◽  
Tiziana Sechi ◽  
Sotero L. Salaris ◽  
Sabrina Miari ◽  
...  

Abstract Background Gastroinestinal nematodes (GIN) are one of the major health problem in grazing sheep. Although genetic variability of the resistance to GIN has been documented, traditional selection is hampered by the difficulty of recording phenotypes, usually fecal egg count (FEC). To identify causative mutations or markers in linkage disequilibrium (LD) to be used for selection, the detection of quantitative trait loci (QTL) for FEC based on linkage disequilibrium-linkage analysis (LDLA) was performed on 4097 ewes (from 181 sires) all genotyped with the OvineSNP50 Beadchip. Identified QTL regions (QTLR) were imputed from whole-genome sequences of 56 target animals of the population. An association analysis and a functional annotation of imputed polymorphisms in the identified QTLR were performed to pinpoint functional variants with potential impact on candidate genes identified from ontological classification or differentially expressed in previous studies. Results After clustering close significant locations, ten QTLR were defined on nine Ovis aries chromosomes (OAR) by LDLA. The ratio between the ANOVA estimators of the QTL variance and the total phenotypic variance ranged from 0.0087 to 0.0176. QTL on OAR4, 12, 19, and 20 were the most significant. The combination of association analysis and functional annotation of sequence data did not highlight any putative causative mutations. None of the most significant SNPs showed a functional effect on genes’ transcript. However, in the most significant QTLR, we identified genes that contained polymorphisms with a high or moderate impact, were differentially expressed in previous studies, contributed to enrich the most represented GO process (regulation of immune system process, defense response). Among these, the most likely candidate genes were: TNFRSF1B and SELE on OAR12, IL5RA on OAR19, IL17A, IL17F, TRIM26, TRIM38, TNFRSF21, LOC101118999, VEGFA, and TNF on OAR20. Conclusions This study performed on a large experimental population provides a list of candidate genes and polymorphisms which could be used in further validation studies. The expected advancements in the quality of the annotation of the ovine genome and the use of experimental designs based on sequence data and phenotypes from multiple breeds that show different LD extents and gametic phases may help to identify causative mutations.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 226
Author(s):  
Matteo Martina ◽  
Yury Tikunov ◽  
Ezio Portis ◽  
Arnaud G. Bovy

Tomato (Solanum lycopersicum L.) aroma is determined by the interaction of volatile compounds (VOCs) released by the tomato fruits with receptors in the nose, leading to a sensorial impression, such as “sweet”, “smoky”, or “fruity” aroma. Of the more than 400 VOCs released by tomato fruits, 21 have been reported as main contributors to the perceived tomato aroma. These VOCs can be grouped in five clusters, according to their biosynthetic origins. In the last decades, a vast array of scientific studies has investigated the genetic component of tomato aroma in modern tomato cultivars and their relatives. In this paper we aim to collect, compare, integrate and summarize the available literature on flavour-related QTLs in tomato. Three hundred and fifty nine (359) QTLs associated with tomato fruit VOCs were physically mapped on the genome and investigated for the presence of potential candidate genes. This review makes it possible to (i) pinpoint potential donors described in literature for specific traits, (ii) highlight important QTL regions by combining information from different populations, and (iii) pinpoint potential candidate genes. This overview aims to be a valuable resource for researchers aiming to elucidate the genetics underlying tomato flavour and for breeders who aim to improve tomato aroma.


Sign in / Sign up

Export Citation Format

Share Document