scholarly journals Importance of relative humidity in the oxidative ageing of organic aerosols: case study of the ozonolysis of maleic acid aerosol

2011 ◽  
Vol 11 (23) ◽  
pp. 12181-12195 ◽  
Author(s):  
P. J. Gallimore ◽  
P. Achakulwisut ◽  
F. D. Pope ◽  
J. F. Davies ◽  
D. R. Spring ◽  
...  

Abstract. Many important atmospheric aerosol processes depend on the chemical composition of the aerosol, e.g. water uptake and particle cloud interactions. Atmospheric ageing processes, such as oxidation reactions, significantly and continuously change the chemical composition of aerosol particles throughout their lifetime. These ageing processes are often poorly understood. In this study we utilize an aerosol flow tube set up and an ultra-high resolution mass spectrometer to explore the effect of relative humidity (RH) in the range of <5–90% on the ozonolysis of maleic acid aerosol which is employed as model organic aerosol system. Due to the slow reaction kinetics relatively high ozone concentrations of 160–200 ppm were used to achieve an appreciable degree of oxidation of maleic acid. The effect of oxidative ageing on the hygroscopicity of maleic acid particles is also investigated using an electrodynamic balance and thermodynamic modelling. RH has a profound effect on the oxidation of maleic acid particles. Very little oxidation is observed at RH < 50% and the only observed reaction products are glyoxylic acid and formic acid. In comparison, when RH > 50% there are about 15 oxidation products identified. This increased oxidation was observed even when the particles were exposed to high humidities long after a low RH ozonolysis reaction. This result might have negative implications for the use of water as an extraction solvent for the analysis of oxidized organic aerosols. These humidity-dependent differences in the composition of the ozonolyzed aerosol demonstrate that water is both a key reactant in the oxidation scheme and a determinant of particle phase and hence diffusivity. The measured chemical composition of the processed aerosol is used to model the hygroscopic growth, which compares favourably with water uptake results from the electrodynamic balance measurements. A reaction mechanism is presented which takes into account the RH dependent observations. This study emphasises the importance of studying the combined effects of several atmospheric parameters such as oxidants and RH to accurately describe the complex oxidation scheme of organic aerosols.

2011 ◽  
Vol 11 (8) ◽  
pp. 23169-23202 ◽  
Author(s):  
P. J. Gallimore ◽  
P. Achakulwisut ◽  
F. D. Pope ◽  
J. Davies ◽  
D. R. Spring ◽  
...  

Abstract. Many important atmospheric aerosol processes depend on the chemical composition of the aerosol, e.g. water uptake and particle cloud interactions. Atmospheric ageing processes, such as oxidation reactions, significantly and continuously change the chemical composition of aerosol particles throughout their lifetime. These ageing processes are often poorly understood. In this study we utilize an aerosol flow tube set up and an ultra-high resolution mass spectrometer to explore the effect of relative humidity (RH) in the range of <5–90 % on the ozonolysis of maleic acid aerosol which is employed as model organic aerosol system. The effect of oxidative ageing on the hygroscopicity of maleic acid particles is also investigated using an electrodynamic balance and thermodynamic modelling. RH has a profound effect on the oxidation of maleic acid particles. Very little oxidation is observed at RH < 50 % and the only observed reaction products are glyoxylic acid and formic acid. In comparison, when RH > 50 % there are about 15 oxidation products identified. This increased oxidation was observed even when the particles were exposed to high humidities long after the ozonolysis reaction. This result might have negative implications for the use of water as an extraction solvent for the analysis of oxidized organic aerosols. These humidity-dependent differences in the composition of the ozonolyzed aerosol demonstrate that water is both a key reactant in the oxidation scheme and a determinant of particle phase and hence diffusivity. The measured chemical composition of the processed aerosol is used to model the hygroscopic growth, which compares favourably with water uptake results from the electrodynamic balance measurements. A reaction mechanism is presented which takes into account the RH dependent observations. This study emphasises the importance of studying the combined effects of several atmospheric parameters such as oxidants and RH to accurately describe the complex oxidation scheme of organic aerosols.


2017 ◽  
Author(s):  
Xiaowei Wang ◽  
Bo Jing ◽  
Fang Tan ◽  
Jiabi Ma ◽  
Yunhong Zhang ◽  
...  

Abstract. Although water uptake of aerosols plays an important role in the atmospheric environment, the effects of interactions between components on chemical composition and hygroscopicity of aerosols are still not well constrained. The hygroscopic properties and phase transformation of oxalic acid (OA) and mixed particles composed of ammonium sulfate (AS) and OA with different organic to inorganic molar ratios (OIRs) have been investigated by using confocal Raman spectroscopy. It is found that OA droplets first crystallize to form oxalic acid dihydrate at 77 % relative humidity (RH), and further lose crystalline water to convert into anhydrous oxalic acid around 5 % RH during the dehydration process. The deliquescence and efflorescence point for AS is determined to be 80.1 ± 1.5 % RH and 44.3 ± 2.5 % RH, respectively. The observed efflorescence relative humidity (ERH) for mixed OA/AS droplets with OIRs of 1:3, 1:1 and 3:1 is 34.4 ± 2.0 % RH, 44.3 ± 2.5 % RH and 64.4 ± 3.0 % RH, respectively, indicating the elevated OA content appears to favor the crystallization of mixed systems at higher RH. However, the partial deliquescence relative humidity (DRH) for mixed OA/AS particles with OIR of 1:3 and 1:1 is observed to occur at 81.1 ± 1.5 % RH and 77 ± 1.0 % RH, respectively. The Raman spectra of mixed OA/AS droplets indicate the formation of ammonium hydrogen oxalate (NH4HC2O4) and ammonium hydrogen sulfate (NH4HSO4) from interactions between OA and AS in aerosols after slow dehydration process in the time scale of hours, which considerably influence the subsequent deliquescence behavior of internally mixed particles with different OIRs. The mixed OA/AS particles with 3:1 ratio exhibit no deliquescence transition over the RH range studied due to the considerable transformation of (NH4)2SO4 into nonhygroscopic NH4HC2O4. Although the hygroscopic growth of mixed OA/AS droplets is comparable to that of AS or OA at high RH during the dehydration process, Raman growth factors of mixed particles after deliquescence are substantially lower than those of mixed OA/AS droplets during the efflorescence process and further decrease with elevated OA content. The discrepancies for Raman growth factors of mixed OA/AS particles between the dehydration and hydration process at high RH can be attributed to the significant formation of NH4HC2O4 and residual OA, which remain solid at high RH and thus result in less water uptake of mixed particles. These findings improve the understanding of the role of reactions between dicarboxylic acid and inorganic salt in the chemical and physical properties of aerosol particles, and might have important implications for atmospheric chemistry.


2010 ◽  
Vol 7 (2) ◽  
pp. 162 ◽  
Author(s):  
Juan G. Navea ◽  
Haihan Chen ◽  
Min Huang ◽  
Gregory R. Carmichel ◽  
Vicki H. Grassian

Environmental context. Dust particles produced from wind blown soils are of global significance as these dust particles not only impact visibility, as evident in the recent 2009 Australian dust storm, but also atmospheric chemistry, climate and biogeochemical cycles. The amount of water vapour in the atmosphere (relative humidity) can play a role in these global processes yet there are few studies and little quantitative data on water-dust particle interactions. The focus of this research is on quantifying water-dust particle interactions for several dust sources including Asia and Africa where dust storms are most prevalent. Abstract. Mineral dust aerosol provides a reactive surface in the troposphere. The reactivity of mineral dust depends on the source region as chemical composition and mineralogy of the aerosol affects its interaction with atmospheric gases. Furthermore, the impact of mineral dust aerosol in atmospheric processes and climate is a function of relative humidity. In this study, we have investigated water uptake of complex dust samples. In particular, water uptake as a function of relative humidity has been measured on three different dust sources that have been characterised using a variety of bulk and surface techniques. For these well-characterised dust samples, it is shown that although there are variations in chemical composition and mineralogy, on a per mass basis, water uptake capacities for the three dusts are very similar and are comparable to single component clay samples. These results suggest that the measured uptake of water of these bulk samples is dominated by the clay component.


2017 ◽  
Vol 17 (20) ◽  
pp. 12797-12812 ◽  
Author(s):  
Xiaowei Wang ◽  
Bo Jing ◽  
Fang Tan ◽  
Jiabi Ma ◽  
Yunhong Zhang ◽  
...  

Abstract. Although water uptake of aerosol particles plays an important role in the atmospheric environment, the effects of interactions between components on chemical composition and hygroscopicity of particles are still not well constrained. The hygroscopic properties and phase transformation of oxalic acid (OA) and mixed particles composed of ammonium sulfate (AS) and OA with different organic to inorganic molar ratios (OIRs) have been investigated by using confocal Raman spectroscopy. It is found that OA droplets first crystallize to form OA dihydrate at 71 % relative humidity (RH), and further lose crystalline water to convert into anhydrous OA around 5 % RH during the dehydration process. The deliquescence and efflorescence point for AS is determined to be 80.1 ± 1.5 % RH and 44.3 ± 2.5 % RH, respectively. The observed efflorescence relative humidity (ERH) for mixed OA ∕ AS droplets with OIRs of 1 : 3, 1 : 1 and 3 : 1 is 34.4 ± 2.0, 44.3 ± 2.5 and 64.4 ± 3.0 % RH, respectively, indicating the elevated OA content appears to favor the crystallization of mixed systems at higher RH. However, the deliquescence relative humidity (DRH) of AS in mixed OA ∕ AS particles with OIRs of 1 : 3 and 1 : 1 is observed to occur at 81.1 ± 1.5 and 77 ± 1.0 % RH, respectively. The Raman spectra of mixed OA ∕ AS droplets indicate the formation of ammonium hydrogen oxalate (NH4HC2O4) and ammonium hydrogen sulfate (NH4HSO4) from interactions between OA and AS in aerosols during the dehydration process on the time scale of hours, which considerably influence the subsequent deliquescence behavior of internally mixed particles with different OIRs. The mixed OA ∕ AS particles with an OIR of 3 : 1 exhibit no deliquescence transition over the RH range studied due to the considerable transformation of (NH4)2SO4 into NH4HC2O4 with a high DRH. Although the hygroscopic growth of mixed OA ∕ AS droplets is comparable to that of AS or OA at high RH during the dehydration process, Raman growth factors of mixed particles after deliquescence are substantially lower than those of mixed OA ∕ AS droplets during the efflorescence process and further decrease with elevated OA content. The discrepancies for Raman growth factors of mixed OA ∕ AS particles between the dehydration and hydration process at high RH can be attributed to the significant formation of NH4HC2O4 and residual OA, which remain solid at high RH and thus result in less water uptake of mixed particles. These findings improve the understanding of the role of reactions between dicarboxylic acid and inorganic salt in the chemical and physical properties of aerosol particles, and might have important implications for atmospheric chemistry.


2010 ◽  
Vol 10 (11) ◽  
pp. 5165-5178 ◽  
Author(s):  
C. M. Carrico ◽  
M. D. Petters ◽  
S. M. Kreidenweis ◽  
A. P. Sullivan ◽  
G. R. McMeeking ◽  
...  

Abstract. As part of the Fire Lab at Missoula Experiments (FLAME) in 2006–2007, we examined hygroscopic properties of particles emitted from open combustion of 33 select biomass fuels. Measurements of humidification growth factors for subsaturated water relative humidity (RH) conditions were made with a hygroscopic tandem differential mobility analyzer (HTDMA) for dry particle sizes of 50, 100 and 250 nm. Results were then fit to a single-parameter model to obtain the hygroscopicity parameter, κ. Particles in freshly emitted biomass smoke exhibited a wide range of hygroscopicity (individual modes with 0


2013 ◽  
Vol 13 (15) ◽  
pp. 7875-7894 ◽  
Author(s):  
I. El Haddad ◽  
B. D'Anna ◽  
B. Temime-Roussel ◽  
M. Nicolas ◽  
A. Boreave ◽  
...  

Abstract. As part of the FORMES summer 2008 experiment, an Aerodyne compact time-of-flight aerosol mass spectrometer (cToF-AMS) was deployed at an urban background site in Marseille to investigate the sources and aging of organic aerosols (OA). France's second largest city and the largest port in the Mediterranean, Marseille, provides a locale that is influenced by significant urban industrialized emissions and an active photochemistry with very high ozone concentrations. Particle mass spectra were analyzed by positive matrix factorization (PMF2) and the results were in very good agreement with previous apportionments obtained using a chemical mass balance (CMB) approach coupled to organic markers and metals (El Haddad et al., 2011a). AMS/PMF2 was able to identify for the first time, to the best of our knowledge, the organic aerosol emitted by industrial processes. Even with significant industries in the region, industrial OA was estimated to contribute only ~ 5% of the total OA mass. Both source apportionment techniques suggest that oxygenated OA (OOA) constitutes the major fraction, contributing ~ 80% of OA mass. A novel approach combining AMS/PMF2 data with 14C measurements was applied to identify and quantify the fossil and non-fossil precursors of this fraction and to explicitly assess the related uncertainties. Results show with high statistical confidence that, despite extensive urban and industrial emissions, OOA is overwhelmingly non-fossil, formed via the oxidation of biogenic precursors, including monoterpenes. AMS/PMF2 results strongly suggest that the variability observed in the OOA chemical composition is mainly driven in our case by the aerosol photochemical age. This paper presents the impact of photochemistry on the increase of OOA oxygenation levels, formation of humic-like substances (HULIS) and the evolution of α-pinene SOA (secondary OA) components.


2021 ◽  
Author(s):  
Maria Ángeles Burgos Simón ◽  
Elisabeth Andrews ◽  
Gloria Titos ◽  
Angela Benedetti ◽  
Huisheng Bian ◽  
...  

&lt;p&gt;The particle hygroscopic growth impacts the optical properties of aerosols and, in turn, affects the aerosol-radiation interaction and calculation of the Earth&amp;#8217;s radiative balance. The dependence of particle light scattering on relative humidity (RH) can be described by the scattering enhancement factor f(RH), defined as the ratio between the particle light scattering coefficient at a given RH divided by its dry value.&lt;/p&gt;&lt;p&gt;The first effort of the AeroCom Phase III &amp;#8211; INSITU experiment was to develop an observational dataset of scattering enhancement values at 26 sites to study the uptake of water by atmospheric aerosols, and evaluate f(RH) globally (Burgos et al., 2019). Model outputs from 10 Earth System Models (CAM, CAM-ATRAS, CAM-Oslo, GEOS-Chem, GEOS-GOCART, MERRAero, TM5, OsloCTM3, IFS-AER, and ECMWF) were then evaluated against this in-situ dataset. Building on these results, we investigate f(RH) in the context of other aerosol optical and chemical properties, making use of the same 10 Earth System Models (ESMs) and in-situ measurements as in Burgos et al. (2020) and Titos et al. (2021).&lt;/p&gt;&lt;p&gt;Given the difficulties of deploying and maintaining instrumentation for long-term, accurate and comprehensive f(RH) observations, it is desirable to find an observational proxy for f(RH). This observation-based proxy would also need to be reproduced in modelling space. Our aim here is to evaluate how ESMs currently represent the relationship between f(RH), scattering &amp;#197;ngstr&amp;#246;m exponent (SAE), and single scattering albedo (SSA). This work helps to identify current challenges in modelling water-uptake by aerosols and their impact on aerosol optical properties within Earth system models.&lt;/p&gt;&lt;p&gt;We start by analyzing the behavior of SSA with RH, finding the expected increase with RH for all site types and models. Then, we analyze the three variables together (f(RH)-SSA-SAE relationship). Results show that hygroscopic particles tend to be bigger and scatter more than non-hygroscopic small particles, though variability within models is noticeable. This relationship can be further studied by relating SAE to model chemistry, by selecting those grid points dominated by a single chemical component (mass mixing ratios &gt; 90%). Finally, we analyze model performance at three specific sites representing different aerosol types: Arctic, marine and rural. At these sites, the model data can be exactly temporally and spatially collocated with the observations, which should help to identify the models which exhibit better agreement with measurements and for which aerosol type.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Burgos, M.A.&amp;#160;et al.:&amp;#160;A global view on the effect of water uptake on aerosol particle light scattering.&amp;#160;Sci Data&amp;#160;6,&amp;#160;157. https://doi.org/10.1038/s41597-019-0158-7, 2019.&lt;/p&gt;&lt;p&gt;Burgos, M.A. et al.: A global model&amp;#8211;measurement evaluation of particle light scattering coefficients at elevated relative humidity, Atmos. Chem. Phys., 20, 10231&amp;#8211;10258, https://doi.org/10.5194/acp-20-10231-2020, 2020.&lt;/p&gt;&lt;p&gt;Titos, G. et al.: A global study of hygroscopicity-driven light scattering enhancement in the context of other in-situ aerosol optical properties, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2020-1250, in review, 2020.&lt;/p&gt;


2018 ◽  
Vol 18 (21) ◽  
pp. 15841-15857 ◽  
Author(s):  
Jörn Lessmeier ◽  
Hans Peter Dette ◽  
Adelheid Godt ◽  
Thomas Koop

Abstract. 2-Methylbutane-1,2,3,4-tetraol (hereafter named tetraol) is an important oxidation product of isoprene and can be considered as a marker compound for isoprene-derived secondary organic aerosols (SOAs). Little is known about this compound's physical phase state, although some field observations indicate that isoprene-derived secondary organic aerosols in the tropics tend to be in a liquid rather than a solid state. To gain more knowledge about the possible phase states of tetraol and of tetraol-containing SOA particles, we synthesized tetraol as racemates as well as enantiomerically enriched materials. Subsequently the obtained highly viscous dry liquids were investigated calorimetrically by differential scanning calorimetry revealing subambient glass transition temperatures Tg. We also show that only the diastereomeric isomers differ in their Tg values, albeit only by a few kelvin. We derive the phase diagram of water–tetraol mixtures over the whole tropospheric temperature and humidity range from determining glass transition temperatures and ice melting temperatures of aqueous tetraol mixtures. We also investigated how water diffuses into a sample of dry tetraol. We show that upon water uptake two homogeneous liquid domains form that are separated by a sharp, locally constrained concentration gradient. Finally, we measured the glass transition temperatures of mixtures of tetraol and an important oxidation product of α-pinene-derived SOA: 3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA). Overall, our results imply a liquid-like state of isoprene-derived SOA particles in the lower troposphere at moderate to high relative humidity (RH), but presumably a semisolid or even glassy state at upper tropospheric conditions, particularly at low relative humidity, thus providing experimental support for recent modeling calculations.


2012 ◽  
Vol 9 (3) ◽  
pp. 298 ◽  
Author(s):  
Angela G. Rincón ◽  
Ana I. Calvo ◽  
Mathias Dietzel ◽  
Markus Kalberer

Environmental contextUnderstanding the molecular composition and chemical transformations of organic aerosols during atmospheric aging is a major challenge in atmospheric chemistry. Ultra-high resolution mass spectrometry can provide detailed information on the molecular composition of organic aerosols. Aerosol samples collected in summer and winter at an urban site are characterised and compared in detail with respect to the elemental composition of their components, especially nitrogen- and sulfur-containing compounds, and are discussed with respect to atmospheric formation processes. AbstractOrganic compounds are major constituents of atmospheric aerosol particles. The understanding of their chemical composition, their properties and reactivity are important for assessing aerosol effects upon both global climate change and human health. The composition of organic aerosols is poorly understood, mainly due to its highly complex chemical composition of several thousand compounds. There is currently no analytical technique available covering a wide enough chemical space to characterise this large number of organic compounds. In recent years ultra-high resolution mass spectrometry has been increasingly used to explore the chemical complexity in organic aerosols from laboratory and ambient samples. In the present study ambient particles <1 µm were collected at an urban site in Cambridge, UK, from August to December 2009. The water-soluble organic fraction of the filters was separated from inorganic ions following a procedure developed for humic-like substance isolation. Ultra-high resolution mass spectrometry analyses were performed in negative and positive polarity. Data in the mass range of m/z 50–350 were analysed for their elemental composition. Summer samples generally contained more components than winter samples. The large number of compounds was subdivided into groups according to their elemental composition. Up to 80 % of the peaks contain nitrogen and sulfur functional groups and only ~20 % of the compounds contain only C, H and O atoms. In summer the fraction of compounds with oxidised nitrogen and sulfur groups increases compared with winter indicating a photo-chemical formation route of these multifunctional compounds. In addition to oxidised nitrogen compounds a large number of amines was identified.


Tellus ◽  
1979 ◽  
Vol 31 (6) ◽  
pp. 478-486 ◽  
Author(s):  
GOTTFRIED HÄNEL ◽  
BRIGITTE ZANKL

Sign in / Sign up

Export Citation Format

Share Document