A comparative evaluation of water uptake on several mineral dust sources

2010 ◽  
Vol 7 (2) ◽  
pp. 162 ◽  
Author(s):  
Juan G. Navea ◽  
Haihan Chen ◽  
Min Huang ◽  
Gregory R. Carmichel ◽  
Vicki H. Grassian

Environmental context. Dust particles produced from wind blown soils are of global significance as these dust particles not only impact visibility, as evident in the recent 2009 Australian dust storm, but also atmospheric chemistry, climate and biogeochemical cycles. The amount of water vapour in the atmosphere (relative humidity) can play a role in these global processes yet there are few studies and little quantitative data on water-dust particle interactions. The focus of this research is on quantifying water-dust particle interactions for several dust sources including Asia and Africa where dust storms are most prevalent. Abstract. Mineral dust aerosol provides a reactive surface in the troposphere. The reactivity of mineral dust depends on the source region as chemical composition and mineralogy of the aerosol affects its interaction with atmospheric gases. Furthermore, the impact of mineral dust aerosol in atmospheric processes and climate is a function of relative humidity. In this study, we have investigated water uptake of complex dust samples. In particular, water uptake as a function of relative humidity has been measured on three different dust sources that have been characterised using a variety of bulk and surface techniques. For these well-characterised dust samples, it is shown that although there are variations in chemical composition and mineralogy, on a per mass basis, water uptake capacities for the three dusts are very similar and are comparable to single component clay samples. These results suggest that the measured uptake of water of these bulk samples is dominated by the clay component.

2015 ◽  
Vol 15 (8) ◽  
pp. 11525-11572 ◽  
Author(s):  
V. A. Karydis ◽  
A. P. Tsimpidi ◽  
A. Pozzer ◽  
M. Astitha ◽  
J. Lelieveld

Abstract. This study provides an assessment of the chemical composition and global aerosol load of the major inorganic aerosol components and determines the effect of mineral dust on their formation, focusing on aerosol nitrate. To account for this effect, the mineral dust aerosol components (i.e., Ca2+, Mg2+, K+, Na+) and their emissions are added to the ECHAM5/MESSy Atmospheric Chemistry model (EMAC). Gas/aerosol partitioning is simulated using the ISORROPIA-II thermodynamic equilibrium model that considers the interactions of K+-Ca2+-Mg2+-NH4+-Na+-SO42−-NO3−-Cl−-H2O aerosol components. Emissions of mineral dust aerosol components (K+-Ca2+-Mg2+-Na+) are calculated online by taking into account the soil particle size distribution and chemical composition of different deserts worldwide. The presence of the metallic ions on the simulated suite of components can substantially affect the nitrate partitioning into the aerosol phase due to thermodynamic interactions. The updated model improved the nitrate predictions over remote areas and found that the fine aerosol nitrate concentration is highest over urban and industrialized areas (1–3 μg m−3), while coarse aerosol nitrate is highest close to deserts (1–4 μg m−3). The contribution of mineral dust components to nitrate formation is large in areas with high dust concentrations with impacts that can extend across southern Europe, western USA and northeastern China. The tropospheric burden of aerosol nitrate increases by 44% by considering the interactions of nitrate with mineral dust cations. The calculated global average nitrate aerosol concentration near the surface increases by 36% while the coarse and fine mode concentrations of nitrate increase by 53 and 21%, respectively. Sensitivity tests show that nitrate aerosol formation is most sensitive to the chemical composition of the emitted mineral dust, followed by the soil size distribution of dust particles, the magnitude of the mineral dust emissions, and the aerosol state assumption.


2020 ◽  
Vol 12 (5) ◽  
pp. 785 ◽  
Author(s):  
Tong Wu ◽  
Zhanqing Li ◽  
Jun Chen ◽  
Yuying Wang ◽  
Hao Wu ◽  
...  

Water uptake by aerosol particles alters its light-scattering characteristics significantly. However, the hygroscopicities of different aerosol particles are not the same due to their different chemical and physical properties. Such differences are explored by making use of extensive measurements concerning aerosol optical and microphysical properties made during a field experiment from December 2018 to March 2019 in Beijing. The aerosol hygroscopic growth was captured by the aerosol optical characteristics obtained from micropulse lidar, aerosol chemical composition, and aerosol particle size distribution information from ground monitoring, together with conventional meteorological measurements. Aerosol hygroscopicity behaves rather distinctly for mineral dust coarse-mode aerosol (Case I) and non-dust fine-mode aerosol (Case II) in terms of the hygroscopic enhancement factor, f β ( R H , λ 532 ) , calculated for the same humidity range. The two types of aerosols were identified by applying the polarization lidar photometer networking method (POLIPHON). The hygroscopicity for non-dust aerosol was much higher than that for dust conditions with the f β ( R H , λ 532 ) being around 1.4 and 3.1, respectively, at the relative humidity of 86% for the two cases identified in this study. To study the effect of dust particles on the hygroscopicity of the overall atmospheric aerosol, the two types of aerosols were identified and separated by applying the polarization lidar photometer networking method in Case I. The hygroscopic enhancement factor of separated non-dust fine-mode particles in Case I had been significantly strengthened, getting closer to that of the total aerosol in Case II. These results were verified by the hygroscopicity parameter, κ (Case I non-dust particles: 0.357 ± 0.024; Case II total: 0.344 ± 0.026), based on the chemical components obtained by an aerosol chemical speciation instrument, both of which showed strong hygroscopicity. It was found that non-dust fine-mode aerosol contributes more during hygroscopic growth and that non-hygroscopic mineral dust aerosol may reduce the total hygroscopicity per unit volume in Beijing.


2019 ◽  
Vol 19 (1) ◽  
pp. 219-232 ◽  
Author(s):  
Xiaole Pan ◽  
Baozhu Ge ◽  
Zhe Wang ◽  
Yu Tian ◽  
Hang Liu ◽  
...  

Abstract. Depolarization ratio (δ) of backscattered light is an applicable parameter for distinguishing the sphericity of particles in real time, which has been widely adopted by ground-based lidar observation systems. In this study, δ values of particles and chemical compositions in both PM2.5 (aerodynamic diameter less than 2.5 µm) and PM10 (aerodynamic diameter less than 10 µm) were concurrently measured on the basis of a bench-top optical particle counter with a polarization detection module (POPC) and a continuous dichotomous aerosol chemical speciation analyzer (ACSA-14) from November 2016 to February 2017 at an urban site in Beijing megacity. In general, measured δ values depended on both size and sphericity of the particles. During the observation period, mass concentrations of NO3- in PM2.5 (fNO3) were about an order of magnitude higher than that in PM2.5−10 (cNO3) with a mean fNO3∕cNO3 ratio of 14±10. A relatively low fNO3∕cNO3 ratio (∼5) was also observed under higher relative humidity conditions, mostly due to heterogeneous processes and particles in the coarse mode. We found that δ values of ambient particles in both PM2.5 and PM2.5−10 obviously decreased as mass concentration of water-soluble species increased at unfavorable meteorological conditions. This indicated that the morphology of particles was changed as a result of water-absorbing processes. The particles with optical size (Dp) of Dp = 5 µm were used to represent mineral dust particles, and its δ values (δDp=5) decreased by 50 % as the mass fraction of cNO3 increased from 2 % to 8 % and ambient relative humidity increased up to 80 %, suggesting that mineral dust particles were likely to be spherical during humid pollution episodes. During the observation, relative humidity inside the POPC measuring chamber was stable at 34±2 %, lower than the ambient condition. Its influence on the morphology was estimated to be limited and did not change our major conclusion. This study highlights the evident alteration of non-sphericity of mineral dust particles during their transport owing to a synergistic effect of both pollutant coatings and hygroscopic processes, which plays an important role in the evaluation of its environmental effect.


2017 ◽  
Author(s):  
Mingjin Tang ◽  
Xin Huang ◽  
Keding Lu ◽  
Maofa Ge ◽  
Yongjie Li ◽  
...  

Abstract. Heterogeneous reactions of mineral dust aerosol with trace gases in the atmosphere could directly and indirectly affect tropospheric oxidation capacity, in addition to aerosol composition and physicochemical properties. In this article we provide a comprehensive and critical review of laboratory studies of heterogeneous uptake of OH, NO3, O3, and their directly related species as well (including HO2, H2O2, HCHO, HONO, and N2O5) by mineral dust particles. Atmospheric importance of heterogeneous uptake as sinks for these species are assessed (i) by comparing their lifetimes with respect to heterogeneous reactions with mineral dust to lifetimes with respect to other major loss processes and (ii) by discussing relevant field and modelling studies. We have also outlined major open questions and challenges in laboratory studies of heterogeneous uptake by mineral dust and discussed research strategies to address them in order to better understand the effects of heterogeneous reactions with mineral dust on tropospheric oxidation capacity.


2017 ◽  
Author(s):  
Xiaowei Wang ◽  
Bo Jing ◽  
Fang Tan ◽  
Jiabi Ma ◽  
Yunhong Zhang ◽  
...  

Abstract. Although water uptake of aerosols plays an important role in the atmospheric environment, the effects of interactions between components on chemical composition and hygroscopicity of aerosols are still not well constrained. The hygroscopic properties and phase transformation of oxalic acid (OA) and mixed particles composed of ammonium sulfate (AS) and OA with different organic to inorganic molar ratios (OIRs) have been investigated by using confocal Raman spectroscopy. It is found that OA droplets first crystallize to form oxalic acid dihydrate at 77 % relative humidity (RH), and further lose crystalline water to convert into anhydrous oxalic acid around 5 % RH during the dehydration process. The deliquescence and efflorescence point for AS is determined to be 80.1 ± 1.5 % RH and 44.3 ± 2.5 % RH, respectively. The observed efflorescence relative humidity (ERH) for mixed OA/AS droplets with OIRs of 1:3, 1:1 and 3:1 is 34.4 ± 2.0 % RH, 44.3 ± 2.5 % RH and 64.4 ± 3.0 % RH, respectively, indicating the elevated OA content appears to favor the crystallization of mixed systems at higher RH. However, the partial deliquescence relative humidity (DRH) for mixed OA/AS particles with OIR of 1:3 and 1:1 is observed to occur at 81.1 ± 1.5 % RH and 77 ± 1.0 % RH, respectively. The Raman spectra of mixed OA/AS droplets indicate the formation of ammonium hydrogen oxalate (NH4HC2O4) and ammonium hydrogen sulfate (NH4HSO4) from interactions between OA and AS in aerosols after slow dehydration process in the time scale of hours, which considerably influence the subsequent deliquescence behavior of internally mixed particles with different OIRs. The mixed OA/AS particles with 3:1 ratio exhibit no deliquescence transition over the RH range studied due to the considerable transformation of (NH4)2SO4 into nonhygroscopic NH4HC2O4. Although the hygroscopic growth of mixed OA/AS droplets is comparable to that of AS or OA at high RH during the dehydration process, Raman growth factors of mixed particles after deliquescence are substantially lower than those of mixed OA/AS droplets during the efflorescence process and further decrease with elevated OA content. The discrepancies for Raman growth factors of mixed OA/AS particles between the dehydration and hydration process at high RH can be attributed to the significant formation of NH4HC2O4 and residual OA, which remain solid at high RH and thus result in less water uptake of mixed particles. These findings improve the understanding of the role of reactions between dicarboxylic acid and inorganic salt in the chemical and physical properties of aerosol particles, and might have important implications for atmospheric chemistry.


2010 ◽  
Vol 10 (22) ◽  
pp. 10771-10788 ◽  
Author(s):  
T. Stanelle ◽  
B. Vogel ◽  
H. Vogel ◽  
D. Bäumer ◽  
C. Kottmeier

Abstract. We used the comprehensive model system COSMO-ART to quantify the impact of mineral dust on the radiative fluxes, the temperature and the feedback between dust particles and their emissions. We simulated two dust storms over West Africa in March 2006 and in June 2007. Simulations with and without coupling of the actual dust concentration with the radiative fluxes and the thermodynamics were carried out for each case. The model results for the 2006 case were compared with observations of the AMMA campaign. At the surface the shortwave radiative effect of mineral dust can be described by a linear relation between the changes in net surface radiation and the aerosol optical depth (AOD). For an AOD at 450 nm of 1 the average shortwave radiation reduction amounts −140 W m−2 during noon. The longwave radiative effect of mineral dust is nonlinear, with an average increase of +70 W m−2 for an AOD (450 nm) of 1. At the top of the atmosphere the effect of the dust layer with an AOD of 1 on radiative fluxes is not as significant as at the surface. It is slightly positive for the shortwave and approximately 26 W m−2 for the longwave radiation. The height range and the extension of the dust layer determine the effect of dust particles on the 2 m temperature. When the dust layer is attached to the surface and lasts for several days it leads to an increase of the surface temperature even during daytime. In case of an elevated dust layer there is a decrease in 2 m temperature of up to 4 K during noon. It is shown, that the temperature changes caused by mineral dust may result in horizontal temperature gradients which also modify near surface winds. Since surface wind thresholds decide the uptake of dust from the surface, a feedback on total emission fluxes is established. The coupled model provides an increase in the total emission fluxes of dust particles by about 16% during the dust storm in March 2006 and 25% during the dust episode in June 2007.


2005 ◽  
Vol 5 (3) ◽  
pp. 3391-3436 ◽  
Author(s):  
C. M. Archuleta ◽  
P. J. DeMott ◽  
S. M. Kreidenweis

Abstract. This study examines the potential role of some types of mineral dust and mineral dust with sulfuric acid coatings as heterogeneous ice nuclei at cirrus temperatures. Commercially-available nanoscale powder samples of aluminum oxide, alumina-silicate and iron oxide were used as surrogates for atmospheric mineral dust particles, with and without multilayer coverage of sulfuric acid. A sample of Asian dust aerosol particles was also studied. Measurements of ice nucleation were made using a continuous-flow ice-thermal diffusion chamber (CFDC) operated to expose size-selected aerosol particles to temperatures between −45 and −60°C and a range of relative humidity above ice-saturated conditions. Pure metal oxide particles supported heterogeneous ice nucleation at lower relative humidities than those required to homogeneously freeze sulfuric acid solution particles at sizes larger than about 50 nm. The ice nucleation behavior of the same metal oxides coated with sulfuric acid indicate heterogeneous freezing at lower relative humidities than those calculated for homogeneous freezing of the diluted particle coatings. The effect of soluble coatings on the ice activation relative humidity varied with the respective uncoated core particle types, but for all types the heterogeneous freezing rates increased with particle size for the same thermodynamic conditions. For a selected size of 200 nm, the natural mineral dust particles were the most effective ice nuclei tested, supporting heterogeneous ice formation at an ice relative humidity of approximately 135%, irrespective of temperature. Modified homogeneous freezing parameterizations and theoretical formulations are shown to have application to the description of heterogeneous freezing of mineral dust-like particles with soluble coatings.


2015 ◽  
Vol 12 (17) ◽  
pp. 14377-14400 ◽  
Author(s):  
N. Meskhidze ◽  
M. S. Johnson ◽  
D. Hurley ◽  
K. Dawson

Abstract. The atmospheric supply of dust iron (Fe) plays a crucial role in the Earth's biogeochemical cycle and is of specific importance as a micronutrient in the marine environment. Observations show several orders of magnitude variability in the fractional solubility of Fe in dust aerosols, making it hard to assess the role of mineral dust for global ocean biogeochemical Fe cycle. In this study we compare the operational solubility of dust aerosol Fe associated with one of the flow-through leaching protocols to the results of the global 3-D chemical transport model GEOS-Chem. In the protocol aerosol Fe is defined soluble by first deionized water leaching of mineral dust through a 0.45 μm pore size membrane followed by acidification and storage of the leachate over a long period of time prior to the analysis. To assess the concentrations of soluble Fe inferred by this flow-through leaching protocol we are using in situ measurements of dust size distribution with the prescribed of 50 % fractional solubility of Fe in less than 0.45 μm sized dust particles collected in the leachate. In the model, the fractional solubility of Fe is either explicitly calculated using complex dust Fe dissolution module, or prescribed to be 1 and 4 %. Calculations show that the fractional solubility of Fe derived through the flow-through leaching is typically higher compared to the model results. The largest differences (>30 %) are predicted to occur farther away from the dust source regions, over the areas where sub-0.45 μm sized mineral dust particles contribute a larger fraction of the total dust mass. This study suggests that inconsistences in the operational definition of soluble Fe could contribute to the wide range of the fractional solubility of dust aerosol Fe reported in the literature.


2021 ◽  
Author(s):  
Perla Alalam ◽  
Hervé Herbin

<p>Large desert lands such as Sahara, Gobi or Australia present main sources of atmospheric mineral dust caused by intense dust storms. Transported dust particles undergo physical and chemical changes affecting their microphysical and optical properties. This modifies their scattering and absorption properties and alters the global atmospheric radiative budget.</p><p>Currently, remote sensing techniques represent a powerful tool for quantitative atmospheric measurements and the only means of analyzing its evolution from local to global scale. In order to improve the knowledge of atmospheric aerosol distributions, many efforts were made particularly in the development of hyperspectral infrared spectrometers and processing algorithms. However, to fully exploit these measurements, a perfect knowledge of Complex Refractive Index (CRI) is required.</p><p>In that purpose, a new methodology <sup></sup>based on laboratory measurements of mineral dust in suspension coupled with an optimal estimation method has been developed. This approach allows getting access to CRI of several desert samples with various chemical compositions.</p><p>Here, we present the first results of the physical parameters (effective radius and concentration) retrievals using Infrared Atmospheric Sounding Interferometer IASI data, during dust storm events. The latter use the CRI of different desert samples obtained in laboratory and a new radiative transfer algorithm (ARAHMIS) developed at Laboratoire d’Optique Atmosphérique LOA.</p>


2011 ◽  
Vol 11 (23) ◽  
pp. 12181-12195 ◽  
Author(s):  
P. J. Gallimore ◽  
P. Achakulwisut ◽  
F. D. Pope ◽  
J. F. Davies ◽  
D. R. Spring ◽  
...  

Abstract. Many important atmospheric aerosol processes depend on the chemical composition of the aerosol, e.g. water uptake and particle cloud interactions. Atmospheric ageing processes, such as oxidation reactions, significantly and continuously change the chemical composition of aerosol particles throughout their lifetime. These ageing processes are often poorly understood. In this study we utilize an aerosol flow tube set up and an ultra-high resolution mass spectrometer to explore the effect of relative humidity (RH) in the range of <5–90% on the ozonolysis of maleic acid aerosol which is employed as model organic aerosol system. Due to the slow reaction kinetics relatively high ozone concentrations of 160–200 ppm were used to achieve an appreciable degree of oxidation of maleic acid. The effect of oxidative ageing on the hygroscopicity of maleic acid particles is also investigated using an electrodynamic balance and thermodynamic modelling. RH has a profound effect on the oxidation of maleic acid particles. Very little oxidation is observed at RH < 50% and the only observed reaction products are glyoxylic acid and formic acid. In comparison, when RH > 50% there are about 15 oxidation products identified. This increased oxidation was observed even when the particles were exposed to high humidities long after a low RH ozonolysis reaction. This result might have negative implications for the use of water as an extraction solvent for the analysis of oxidized organic aerosols. These humidity-dependent differences in the composition of the ozonolyzed aerosol demonstrate that water is both a key reactant in the oxidation scheme and a determinant of particle phase and hence diffusivity. The measured chemical composition of the processed aerosol is used to model the hygroscopic growth, which compares favourably with water uptake results from the electrodynamic balance measurements. A reaction mechanism is presented which takes into account the RH dependent observations. This study emphasises the importance of studying the combined effects of several atmospheric parameters such as oxidants and RH to accurately describe the complex oxidation scheme of organic aerosols.


Sign in / Sign up

Export Citation Format

Share Document