scholarly journals Assessment of past, present and future health-cost externalities of air pollution in Europe and the contribution from international ship traffic using the EVA model system

2013 ◽  
Vol 13 (15) ◽  
pp. 7747-7764 ◽  
Author(s):  
J. Brandt ◽  
J. D. Silver ◽  
J. H. Christensen ◽  
M. S. Andersen ◽  
J. H. Bønløkke ◽  
...  

Abstract. An integrated model system, EVA (Economic Valuation of Air pollution), based on the impact-pathway chain has been developed to assess the health-related economic externalities of air pollution resulting from specific emission sources or sectors. The model system can be used to support policy-making with respect to emission control. In this study, we apply the EVA system to Europe, and perform a more detailed assessment of past, present, and future health-cost externalities of the total air pollution levels in Europe (including both natural and anthropogenic sources), represented by the years 2000, 2007, 2011, and 2020. We also assess the contribution to the health-related external costs from international ship traffic with special attention to the international ship traffic in the Baltic and North seas, since special regulatory actions on sulfur emissions, called SECA (sulfur emission control area), have been introduced in these areas. We conclude that, despite efficient regulatory actions in Europe in recent decades, air pollution still constitutes a serious problem for human health. Hence the related external costs are considerable. The total health-related external costs for the whole of Europe are estimated at 803 bn euros yr−1 for the year 2000, decreasing to 537 bn euros yr−1 in the year 2020. We estimate the total number of premature deaths in Europe in the year 2000 due to air pollution to be around 680 000 yr−1, decreasing to approximately 450 000 in the year 2020. The contribution from international ship traffic in the Northern Hemisphere was estimated to 7% of the total health-related external costs in Europe in the year 2000, increasing to 12% in the year 2020. In contrast, the contribution from international ship traffic in the Baltic Sea and the North Sea decreases 36% due to the regulatory efforts of reducing sulfur emissions from ship traffic in SECA. Introducing this regulatory instrument for all international ship traffic in the Northern Hemisphere, or at least in areas close to Europe, would have a significant positive impact on human health in Europe.

2013 ◽  
Vol 13 (3) ◽  
pp. 5923-5959 ◽  
Author(s):  
J. Brandt ◽  
J. D. Silver ◽  
J. H. Christensen ◽  
M. S. Andersen ◽  
J. H. Bønløkke ◽  
...  

Abstract. An integrated model system, EVA (Economic Valuation of Air pollution), based on the impact-pathway chain has been developed, to assess the health-related economic externalities of air pollution resulting from specific emission sources or sectors. The model system can be used to support policy-making with respect to emission control. In this study, we apply the EVA system to Europe, and perform a more detailed assessment of past, present, and future health-cost externalities of the total air pollution levels in Europe (including both natural and anthropogenic sources), represented by the years 2000, 2007, 2011, and 2020. We also assess the contribution to the health-related external costs from international ship traffic with special attention to the international ship traffic in the Baltic and North Seas, since special regulatory actions on sulphur emissions, called SECA (sulphur emission control area), have been introduced in these areas,. We conclude that despite efficient regulatory actions in Europe in recent decades, air pollution still constitutes a serious problem to human health, hence the related external costs are considerable. The total health-related external costs for the whole of Europe is estimated at 803 bn Euro yr−1 for the year 2000, decreasing to 537 bn Euro yr−1 in the year 2020. We estimate the total number of premature deaths in Europe in the year 2000 due to air pollution to be around 680 000 yr−1, decreasing to approximately 450 000 in the year 2020. The contribution from international ship traffic in the Northern Hemisphere was estimated to 7% of the total health-related external costs in Europe in the year 2000, increasing to 12% in the year 2020. In contrast, the contribution from international ship traffic in the Baltic Sea and the North Sea decreases 36% due to the regulatory efforts of reducing sulphur emissions from ship traffic in SECA. Introducing this regulatory instrument for all international ship traffic in the Northern Hemisphere, or at least in areas close to Europe, would have a significant positive impact on human health in Europe.


2013 ◽  
Vol 13 (15) ◽  
pp. 7725-7746 ◽  
Author(s):  
J. Brandt ◽  
J. D. Silver ◽  
J. H. Christensen ◽  
M. S. Andersen ◽  
J. H. Bønløkke ◽  
...  

Abstract. We have developed an integrated model system, EVA (Economic Valuation of Air pollution), based on the impact-pathway chain, to assess the health-related economic externalities of air pollution resulting from specific emission sources or sectors, which can be used to support policy-making with respect to emission control. Central for the system is a newly developed tagging method capable of calculating the contribution from a specific emission source or sector to the overall air pollution levels, taking into account the non-linear atmospheric chemistry. The main objective of this work is to identify the anthropogenic emission sources in Europe and Denmark that contribute the most to human health impacts. In this study, we applied the EVA system to Europe and Denmark, with a detailed analysis of health-related external costs from the ten major emission sectors and their relative contributions. The paper contains a thorough description of the EVA system, the main results from the assessment of the main contributors and a discussion of the most important atmospheric chemical reactions relevant for interpreting the results. The main conclusion from the analysis is that the major contributors to health-related external costs are major power production, agriculture, road traffic, and non-industrial domestic combustion, including wood combustion. We conclude that when regulating the emissions of ammonia from the agricultural sector, both the impacts on nature and on human health should be taken into account. This study confirms that air pollution constitutes a serious problem for human health and that the related external costs are considerable. The results in this work emphasize the importance of defining the right questions in the decision-making process. The results from assessing the impacts from each emission sector depend clearly on the assumption that the other emission sectors are not changed, especially emissions changing concentrations of atmospheric OH and therefore lifetimes of other chemical species.


2013 ◽  
Vol 13 (3) ◽  
pp. 5871-5922 ◽  
Author(s):  
J. Brandt ◽  
J. D. Silver ◽  
J. H. Christensen ◽  
M. S. Andersen ◽  
J. H. Bønløkke ◽  
...  

Abstract. We have developed an integrated model system, EVA (Economic Valuation of Air pollution), based on the impact-pathway chain, to assess the health-related economic externalities of air pollution resulting from specific emission sources or sectors, which can be used to support policy-making with respect to emission control. Central for the system is a newly developed tagging method capable of calculating the contribution from a specific emission source or sector to the overall air pollution levels, taking into account the non-linear atmospheric chemistry. The main objective of this work is to identify the anthropogenic emission sources in Europe and Denmark that contribute the most to human health impacts using this tagging method. In this study, we applied the EVA system to Europe and Denmark, with a detailed analysis of health-related external costs from the ten major emission sectors and their relative contributions. The paper contains a thorough description of the EVA system, the main results from the assessment of the main contributors and a discussion of the most important atmospheric chemical reactions relevant for interpreting the results. The main conclusion from the analysis of the ten major emission sectors in Europe and Denmark is that the major contributors to health-related external costs are major power production, agriculture, road traffic, and non-industrial domestic combustion, including wood combustion. We conclude that when regulating the emissions of ammonia from the agricultural sector, both the impacts on nature and on human health should be taken into account. This study confirms that air pollution constitutes a serious problem to human health and that the related external costs are considerable. The results in this work emphasize the importance of defining the right questions in the decision making process, since most of the atmospheric chemical compounds are linked via non-linear chemical reactions, which are important to take into account. The results from assessing the impacts from each emission sector depend clearly on the assumption that the other emission sectors are not changed, especially emissions changing concentrations of atmospheric OH and therefore live times of other chemical species.


2019 ◽  
Vol 72 (1) ◽  
pp. 12-16
Author(s):  
Ruslan V. Tekliuk ◽  
Ihor V. Serheta ◽  
Oksana A. Serebrennikova

Introduction: Both positive and risky health behaviours among adolescents are of paramount importance as they often pathway further lifestyles and determine future health outcomes. The paper focuses on the trends of health promotion activities and health risks among adolescents who have been instructed on these topics at secondary schools. The aim: to detect trends in pro-active health behaviour and risk taking activities of Ukrainian adolescents in the last 14 years. Materials and methods: males and females, aged 15-17, who studied in secondary schools of the urban area of Vinnytsia city, Ukraine, in the years 2003, 2013, 2017, anonymously filled in the 118-item questionnaire. Descriptive statistics, Cochran Q test, Spearman correlation analysis, Kendall’s tau coefficient were used to analyze the data. Results: Overall, the data about health related issues obtained in the year 2003 vary significantly from the years 2013 and 2017, which indicates some beneficial influence that has taken place since 2003. Much fewer differences were spotted between the years 2013 and 2017. Health related behaviours in females showed less significant dynamics and some changes indicate regression, while males reported multiple improved results. Meanwhile actual numbers of males who opted for risky behaviours were higher than those of females. Significant relationships were found between some socio-economic factors, positive health behaviours (sufficient sleep, physical activity, daily regime, and life satisfaction) and proactive health choices. Conclusions: The available data suggests that there was a beneficial health-related influence on the schoolchildren over the years 2003-2017. Our findings also support the view that certain assets may protect the youth from risk-taking behaviours.


2011 ◽  
Vol 11 (9) ◽  
pp. 25991-26007 ◽  
Author(s):  
R. Makkonen ◽  
A. Asmi ◽  
V.-M. Kerminen ◽  
M. Boy ◽  
A. Arneth ◽  
...  

Abstract. The number of cloud droplets determines several climatically relevant cloud properties. A major cause for the high uncertainty in the indirect aerosol forcing is the availability of cloud condensation nuclei (CCN), which in turn is highly sensitive to atmospheric new particle formation. Here we present the effect of new particle formation on anthropogenic aerosol forcing in present-day (year 2000) and future (year 2100) conditions. The total aerosol forcing (−1.61 W m−2 in year 2000) is simulated to be greatly reduced in the future, to −0.23 W m−2, mainly due to decrease in SO2 emissions and resulting decrease in new particle formation. With the total aerosol forcing decreasing in response to air pollution control measures taking effect, warming from increased greenhouse gas concentrations can potentially increase at a very rapid rate.


10.2196/16879 ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. e16879 ◽  
Author(s):  
Christophe Olivier Schneble ◽  
Bernice Simone Elger ◽  
David Martin Shaw

Tremendous growth in the types of data that are collected and their interlinkage are enabling more predictions of individuals’ behavior, health status, and diseases. Legislation in many countries treats health-related data as a special sensitive kind of data. Today’s massive linkage of data, however, could transform “nonhealth” data into sensitive health data. In this paper, we argue that the notion of health data should be broadened and should also take into account past and future health data and indirect, inferred, and invisible health data. We also lay out the ethical and legal implications of our model.


Időjárás ◽  
2021 ◽  
Vol 125 (4) ◽  
pp. 625-646
Author(s):  
Zita Ferenczi ◽  
Emese Homolya ◽  
Krisztina Lázár ◽  
Anita Tóth

An operational air quality forecasting model system has been developed and provides daily forecasts of ozone, nitrogen oxides, and particulate matter for the area of Hungary and three big cites of the country (Budapest, Miskolc, and Pécs). The core of the model system is the CHIMERE off-line chemical transport model. The AROME numerical weather prediction model provides the gridded meteorological inputs for the chemical model calculations. The horizontal resolution of the AROME meteorological fields is consistent with the CHIMERE horizontal resolution. The individual forecasted concentrations for the following 2 days are displayed on a public website of the Hungarian Meteorological Service. It is essential to have a quantitative understanding of the uncertainty in model output arising from uncertainties in the input meteorological fields. The main aim of this research is to probe the response of an air quality model to its uncertain meteorological inputs. Ensembles are one method to explore how uncertainty in meteorology affects air pollution concentrations. During the past decades, meteorological ensemble modeling has received extensive research and operational interest because of its ability to better characterize forecast uncertainty. One such ensemble forecast system is the one of the AROME model, which has an 11-member ensemble where each member is perturbed by initial and lateral boundary conditions. In this work we focus on wintertime particulate matter concentrations, since this pollutant is extremely sensitive to near-surface mixing processes. Selecting a number of extreme air pollution situations we will show what the impact of the meteorological uncertainty is on the simulated concentration fields using AROME ensemble members.


Sign in / Sign up

Export Citation Format

Share Document