scholarly journals Organic aerosol source apportionment by offline-AMS over a full year in Marseille

2017 ◽  
Vol 17 (13) ◽  
pp. 8247-8268 ◽  
Author(s):  
Carlo Bozzetti ◽  
Imad El Haddad ◽  
Dalia Salameh ◽  
Kaspar Rudolf Daellenbach ◽  
Paola Fermo ◽  
...  

Abstract. We investigated the seasonal trends of OA sources affecting the air quality of Marseille (France), which is the largest harbor of the Mediterranean Sea. This was achieved by measurements of nebulized filter extracts using an aerosol mass spectrometer (offline-AMS). In total 216 PM2. 5 (particulate matter with an aerodynamic diameter  <  2.5 µm) filter samples were collected over 1 year from August 2011 to July 2012. These filters were used to create 54 composite samples which were analyzed by offline-AMS. The same samples were also analyzed for major water-soluble ions, metals, elemental and organic carbon (EC ∕ OC), and organic markers, including n-alkanes, hopanes, polycyclic aromatic hydrocarbons (PAHs), lignin and cellulose pyrolysis products, and nitrocatechols. The application of positive matrix factorization (PMF) to the water-soluble AMS spectra enabled the extraction of five factors, related to hydrocarbon-like OA (HOA), cooking OA (COA), biomass burning OA (BBOA), oxygenated OA (OOA), and an industry-related OA (INDOA). Seasonal trends and relative contributions of OA sources were compared with the source apportionment of OA spectra collected from the AMS field deployment at the same station but in different years and for shorter monitoring periods (February 2011 and July 2008). Online- and offline-AMS source apportionment revealed comparable seasonal contribution of the different OA sources. Results revealed that BBOA was the dominant source during winter, representing on average 48 % of the OA, while during summer the main OA component was OOA (63 % of OA mass on average). HOA related to traffic emissions contributed on a yearly average 17 % to the OA mass, while COA was a minor source contributing 4 %. The contribution of INDOA was enhanced during winter (17 % during winter and 11 % during summer), consistent with an increased contribution from light alkanes, light PAHs (fluoranthene, pyrene, phenanthrene), and selenium, which is commonly considered as a unique coal combustion and coke production marker. Online- and offline-AMS source apportionments revealed evolving levoglucosan : BBOA ratios, which were higher during late autumn and March. A similar seasonality was observed in the ratios of cellulose combustion markers to lignin combustion markers, highlighting the contribution from cellulose-rich biomass combustion, possibly related to agricultural activities.

2020 ◽  
Vol 10 (12) ◽  
pp. 4222
Author(s):  
Bernadette Kirchsteiger ◽  
Magdalena Kistler ◽  
Thomas Steinkogler ◽  
Christopher Herzig ◽  
Andreas Limbeck ◽  
...  

In early 2017 high particulate matter (PM) levels were observed across mid-Europe, including Austria. Here we characterize PM pollution in the city of Graz during January to March 2017, a period with substantial exceedances (34 days) of the European Union (EU) PM10 short time limit value. This study evaluates whether the observed exceedances can be attributed to the accumulation of pollutants emitted by local sources or to a larger scale pollution episode including transport. The analyses are based on the ratios of PM10 concentrations determined at an urban and background site, and the analyses of chemical composition of PM2.5 samples (i.e., water soluble ions, organic and elemental carbon, anhydro-sugars, humic-like substances, aluminum, and polycyclic aromatic hydrocarbons). Source apportionment was realized using a macro-tracer model. Overall, the combination of different approaches (PM10 ratios, chemical composition, and macro-tracer derived source apportionment) enabled a conclusive identification of time periods characterized by the accumulation of emissions from local sources or regional pollution episodes.


2022 ◽  
Author(s):  
Qianqian Xue ◽  
Ying-Ze Tian ◽  
Yang Wei ◽  
Danlin Song ◽  
Fengxia Huang ◽  
...  

Abstract PM2.5 samples collected over a 1-year period in a Chinese megacity were analyzed for organic carbon (OC), elemental carbon (EC), water soluble ions, elements and organic markers such as polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes, and n-alkanes. In order to study the applicability of organic markers in source apportionment, this study analyzes the relationship between organic and inorganic components, and four scenarios were implemented by incorporating different combinations of organic and inorganic tracers. A positive correlation of SO42− with 4 rings PAHs can prove that coal burning directly emits a portion of sulfate. A positive correlation of NO3− with 5-7 rings PAHs are found, implying collective impacts from the vehicle source. The concentrations of OC and EC positively correlate with the 5-7 rings PAHs and Cu and Zn, which proves that part of Cu and Zn comes from vehicle emissions. Five factors were identified by incorporating only conventional components, including secondary source (SS, 30%), urban fugitive dust (UFD, 14%), cement dust (CD, 4%), traffic source (TS, 19%) and coal combustion (CC, 14%). Six factors were identified by incorporating conventional components and PAHs, including SS (28%), UFD (15%), CD (4%), CC (13%), gasoline vehicles (GV, 12%) and diesel vehicles (DV, 10%). Eight factors were identified by incorporating conventional components, PAHs, hopanes, and n-alkanes, including SS (26%), UFD (17%), CD (3%), GV (14%), DV (8%), immature coal combustion (ICC, 5%), mature coal combustion (MCC, 10%) and biogenic source (BS, 1%).


2016 ◽  
Vol 2 (2) ◽  
pp. 71-78
Author(s):  
Yoshika Sekine ◽  
◽  
Nami Takahashi ◽  
Yuri Ohkoshi ◽  
Akihiro Takemasa ◽  
...  

Atmosphere ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 490 ◽  
Author(s):  
Jong-Min Park ◽  
Young-Ji Han ◽  
Sung-Hwan Cho ◽  
Hyun-Woong Kim

PM2.5 has been a serious issue in South Korea not only in urban and industrial areas but also in rural and background areas. In this study, PM2.5 and its carbonaceous compounds including organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and polycyclic aromatic hydrocarbons (PAHs) were collected and analyzed in a small residential city. The PM2.5 concentration frequently exceeded the national ambient air quality standard during the spring and the winter, which often occurred concurrently with fog and mist events. Over the whole sampling period, both OC and the OC/EC ratio were considerably higher than the ratios in other cities in Korea, which suggests that sources other than vehicular emissions were important. The top 10% of OC/EC ratio samples could be explained by regional and long-range transport because there was a strong correlation between primary and secondary organic carbon. However, biomass combustion was likely to account for the consistently high OC concentration due to a strong correlation between WSOC and primary OC as well as the diagnostic ratio results of PAHs.


2016 ◽  
Vol 189 ◽  
pp. 361-380 ◽  
Author(s):  
Farimah Shirmohammadi ◽  
Sina Hasheminassab ◽  
Dongbin Wang ◽  
James J. Schauer ◽  
Martin M. Shafer ◽  
...  

This study examines the associations between the oxidative potential of ambient PM2.5and PM0.18, measured by means of the dithiothreitol (DTT) assay, and their chemical constituents and modeled sources. Particulate matter (PM) samples were collected from 2012–2013 in Central Los Angeles (LA) and 2013–2014 in Anaheim, California, USA. Detailed chemical analyses of the PM samples, including carbonaceous species, inorganic elements and water-soluble ions, were conducted. Univariate analysis indicated a high correlation (R> 0.60) between the DTT activity and the concentrations of carbonaceous species at both sites. The strongest correlations were observed between DTT and organic tracers of primary vehicle tailpipe emissions including polycyclic aromatic hydrocarbons (PAHs) and hopanes as well as EC, with higher correlations for PM0.18versusPM2.5components. Moreover, metals and trace elements (e.g., Ba, Cu, Fe, Mn, Pb and Sb) in both size ranges were also associated with DTT activity. Multiple linear regression (MLR) analysis was performed on DTT activity and PM sources identified by a Molecular Marker-Chemical Mass Balance (MM-CMB) model (i.e.major carbonaceous sources: vehicle tailpipe emissions, wood smoke, primary biogenic and secondary organic carbon) together with other typical sources of ambient PM (i.e.crustal material, vehicular abrasion, secondary ions and sea salt). Overall, our findings illustrate the relative importance of different traffic sources on the oxidative potential of ambient PM. Despite major reductions of tailpipe emissions, the lack of similar reductions (and possibly an increase) in non-tailpipe emissions makes them an important source of traffic-related PM in Los Angeles and their increasing role in the overall PM toxicity raises concerns for public health.


2016 ◽  
Author(s):  
Min Cui ◽  
Yingjun Chen ◽  
Cheng Li ◽  
Junyu Zheng ◽  
Chongguo Tian ◽  
...  

Abstract. With increasing population of both non-road and on-road diesel vehicles, the adverse effects of PM and its compositions (such as elemental carbon (EC), polycyclic aromatic hydrocarbons (PAHs)) on air quality and human health get more and more attention. However, characteristics of PM and its compositions emitted from diesel vehicles, particularly measured under real-world condition, are scarce. In this study, six excavators and five trucks, involving wide-range emission standards and working in different operating modes, were tested to characterize constituents of PM (including organic carbon (OC), EC, water soluble ions (WSIs), elements, and organic species such as PAHs, n-alkanes, hopanes and steranes). The average emission factors of PM (EFPM) for excavators and trucks were 829 ± 806 and 498 ± 234 mg kg−1 fuel, respectively, which are comparable with other studies. However, EFPM was significantly affected by fuel quality, operating modes and emission standards. High correlation (R2 = 0.79, p 


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8447 ◽  
Author(s):  
Yali Lei ◽  
Zhenxing Shen ◽  
Zhuoyue Tang ◽  
Qian Zhang ◽  
Jian Sun ◽  
...  

Daily PM10and PM2.5 sampling was conducted during four seasons from December 2013 to October 2014 at three monitoring sites over Yulin, a desert margin city. PM10 and PM2.5 levels, water soluble ions, organic carbon (OC), and elemental carbon (EC) were also analyzed to characterize their chemical profiles. bext (light extinction coefficient) was calculated, which showed the highest in winter with an average of 232.95 ± 154.88 Mm−1, followed by autumn, summer, spring. Light extinction source apportionment results investigated (NH4)2SO4 and NH4NO3 played key roles in the light extinction under high RH conditions during summer and winter. Sulfate, nitrate and Ca2 + dominated in PM10/PM2.5 ions. Ion balance results illustrated that PM samples were alkaline, and PM10 samples were more alkaline than PM2.5. High SO42−/K+ and Cl−/K+ ratio indicated the important contribution of coal combustion, which was consistent with the OC/EC regression equation intercepts results. Principal component analysis (PCA) analyses results showed that the fugitive dust was the most major source of PM, followed by coal combustion & gasoline vehicle emissions, secondary formation and diesel vehicle emissions. Potential contribution source function (PSCF) results suggested that local emissions, as well as certain regional transport from northwesterly and southerly areas contributed to PM2.5 loadings during the whole year. Local government should take some measures to reduce the PM levels.


2014 ◽  
Vol 14 (19) ◽  
pp. 26257-26296 ◽  
Author(s):  
Y.-L. Zhang ◽  
R.-J. Huang ◽  
I. El Haddad ◽  
K.-F. Ho ◽  
J.-J. Cao ◽  
...  

Abstract. During winter 2013, extremely high concentrations (i.e. 4–20 times higher than the World Health Organization guideline) of PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) were reported in several large cities in China. In this work, source apportionment of fine carbonaceous aerosols during this haze episode was conducted at four major cities in China including Xian, Beijing, Shanghai and Guangzhou. An effective statistical analysis of a combined dataset from elemental carbon (EC) and organic carbon (OC), radiocarbon (14C) and biomass-burning marker measurements using Latin-hypercube sampling allowed a quantitative source apportionment of carbonaceous aerosols. We found that fossil emissions from coal combustion and vehicle exhaust dominated EC with a mean contribution of 75 ± 8% at all sites. The remaining 25 ± 8% was exclusively attributed to biomass combustion, consistent with the measurements of biomass-burning markers such as anhydrosugars (levoglucosan and mannosan) and water-soluble potassium (K+). With a combination of the levoglucosan-to-mannosan and levoglucosan-to-K+ ratios, the major source of biomass burning in winter in China is suggested to be combustion of crop residues. The contribution of fossil sources to OC was highest in Beijing (58 ± 5%) and decreased from Shanghai (49 ± 2%) to Xian (38 ± 3%) and Guangzhou (35 ± 7%). Generally, a larger fraction of fossil OC was rather from secondary origins than primary sources for all sites. Non-fossil sources accounted on average for 55 ± 10% and 48 ± 9% of OC and TC, respectively, which suggests that non-fossil emissions were very important contributors of urban carbonaceous aerosols in China. The primary biomass-burning emissions accounted for 40 ± 8%, 48 ± 18%, 53 ± 4% and 65 ± 26% of non-fossil OC for Xian, Beijing, Shanghai and Guangzhou, respectively. Other non-fossil sources excluding primary biomass-burning were mainly attributed to formation of secondary organic carbon (SOC) from non-fossil precursors such as biomass-burning emissions. For each site, we also compared samples from moderately with heavily polluted days according to particulate matter mass. Despite a significant increase of absolute mass concentrations of primary emissions from both, fossil and non-fossil sources, during the heavily polluted events, their relative contribution to TC was even decreased, whereas the portion of SOC was consistently increased at all sites. This observation indicates that SOC was an important fraction in the increment of carbonaceous aerosols during the haze episode in China.


2020 ◽  
Vol 218 ◽  
pp. 04027
Author(s):  
Dan Zhang ◽  
Ruyue Yan ◽  
Lizhi Xiao ◽  
Xin Wei ◽  
Baoyu Zhu ◽  
...  

As a major agricultural province in China, Northeast China produces a lot of biomass while its grain yield is high. Open burning is an efficient and convenient way to remove biomass. However, air pollutants (PM2.5, CO, VOCs) will be released in the process of biomass combustion, which will have a certain impact on Regional Environmental quality, atmospheric visibility and human health. Because of the various type of biomass, their combustion products and effects are different. In this study, there collected peanut hull, rice husk, straw and wood particles, and carried out the simulated combustion experiment in the laboratory environment simulation chamber. The inorganic elements, water-soluble ions and speciation analysis of combustion products were determined. The results showed that the content of Zn was higher than that of carcinogenic element in the eight inorganic elements after combustion. The water-soluble ion emission factors of wheat straw and wood particles are larger than those of peanut hull and rice husk, and the water-soluble ions are mainly K+ and CL. Through the morphology analysis of combustion products, it can be seen that different types of biomass have different morphology after combustion, which are mainly strip, column and particle. Combined with energy spectrum analysis, it is found that the content of K and CL is high. The results lay a theoretical foundation for the study of local biomass combustion and provide data for the determination of local biomass combustion emission characteristics.


Sign in / Sign up

Export Citation Format

Share Document