scholarly journals Typical types and formation mechanisms of haze in an Eastern Asia megacity, Shanghai

2012 ◽  
Vol 12 (1) ◽  
pp. 105-124 ◽  
Author(s):  
K. Huang ◽  
G. Zhuang ◽  
Y. Lin ◽  
J. S. Fu ◽  
Q. Wang ◽  
...  

Abstract. An intensive aerosol and gases campaign was performed at Shanghai in the Yangtze River Delta region over Eastern China from late March to early June 2009. This study provided a complementary picture of typical haze types and the formation mechanisms in megacities over China by using a synergy of ground-based monitoring, satellite and lidar observations. During the whole study period, several extreme low visibility periods were observed with distinct characteristics, and three typical haze types were identified, i.e. secondary inorganic pollution, dust, and biomass burning. Sulfate, nitrate and ammonium accounted for a major part of PM2.5 mass during the secondary inorganic pollution, and the good correlation between SO2/NOx/CO and PM2.5 indicated that coal burning and vehicle emission were the major sources. Large-scale regions with high AOD (aerosol optical depths) and low Ångström exponent were detected by remote-sensing observation during the dust pollution episode, and this episode corresponded to coarse particles rich in mineral components such as Al and Ca contributing 76.8% to TSP. The relatively low Ca/Al ratio of 0.75 along with the air mass backward trajectory analysis suggested the dust source was from Gobi Desert. Typical tracers for biomass burning from satellite observation (column CO and HCHO) and from ground measurement (CO, particulate K+, OC, and EC) were greatly enhanced during the biomass burning pollution episode. The exclusive linear correlation between CO and PM2.5 corroborated that organic aerosol dominated aerosol chemistry during biomass burning, and the high concentration and enrichment degree of arsenic (As) could be also partly derived from biomass burning. Aerosol optical profile observed by lidar demonstrated that aerosol was mainly constrained below the boundary layer and comprised of spheric aerosol (depolarization ratio <5%) during the secondary inorganic and biomass burning episodes, while thick dust layer distributed at altitudes from near surface to 1.4 km (average depolarization ratio = 0.122 &amp;pm; 0.023) with dust accounting for 44–55% of the total aerosol extinction coefficient during the dust episode. This study portrayed a good picture of the typical haze types and proposed that identification of the complicated emission sources is important for the air quality improvement in megacities in China.

2011 ◽  
Vol 11 (8) ◽  
pp. 21713-21767 ◽  
Author(s):  
K. Huang ◽  
G. Zhuang ◽  
Y. Lin ◽  
J. S. Fu ◽  
Q. Wang ◽  
...  

Abstract. An intensive aerosol and gases campaign has been performed at Shanghai in the Yangtze River Delta region over Eastern China from late March to early June 2009. This study provided a complementary picture of typical haze types and formation mechanisms in megacities over China by using a synergy of ground-based monitoring, satellite observation and lidar inversion. During the whole study period, several extreme low visibility periods were observed with distinct characteristics, and three typical haze types were identified, i.e. secondary inorganic pollution, dust, and biomass burning. Sulfate, nitrate and ammonium accounted for a major part of PM2.5 mass during the secondary inorganic pollution, and the good correlation between SO2/NOx/CO and PM2.5 indicated that coal burning and vehicle emission were the major sources. Large-scale regions with high AOD and low Ångström exponent were detected by remote-sensing observation during the dust pollution episode, and this episode corresponded to coarse particles rich in mineral components such as Al and Ca with mineral aerosol contributing 76.8 % to TSP. The relatively low Ca/Al ratio of 0.75 combined with the air mass backward trajectory analysis suggested the dust source from Gobi Desert. Typical tracers for biomass burning from satellite observation (column CO and HCHO) and from ground measurement (CO, particulate K+, OC, and EC) were greatly enhanced during the biomass burning pollution episode. The exclusive linear correlation between CO and PM2.5 corroborated that organic aerosol dominated aerosol chemistry during biomass burning, and the high concentration and enrichment degree of arsenic (As) could be also partly derived from biomass burning. Aerosol optical profile observed by lidar demonstrated that aerosol was mainly constrained below the boundary layer and comprised of spheric aerosol (depolarization ratio <5 %) during the secondary inorganic and biomass burning episodes, while during the dust episode thick dust layer distributed at altitudes from near the ground to 1.4 km (average depolarization ratio = 0.122 ± 0.023) with dust accounting for 44–55 % of the total aerosol extinction coefficient. This study had illustrated a good picture of the typical haze types and proposed that identification of the complicated emission sources was important for the air quality improvement in megacities in China.


2018 ◽  
Author(s):  
Derong Zhou ◽  
Ke Ding ◽  
Xin Huang ◽  
Lixia Liu ◽  
Qiang Liu ◽  
...  

Abstract. Anthropogenic fossil fuel (FF) combustion, biomass burning (BB) and desert dust are main sources of air pollutants around the globe. The emission of the three sources in Asia are all very intensive and their influences on air quality is very important, especially in spring. In this study, we investigate the vertical distribution, transport characteristics, source contribution, and meteorological feedback of the dust, BB and FF aerosols in a unique pollution episode occurred in eastern Asia based on various measurement data and modelling methods. Ground-based observations indicated a persistent pollution episode dramatically changing from secondary fine particulate pollution to dust pollution in late March 2015 over the Yangtze River Delta (YRD) region, eastern China. The online-coupled meteorology–chemistry–aerosol modelling together with Lagrangian particle dispersion simulations were conducted to investigate the vertical structure, transport characteristics and mechanisms of the multi-scale, multi-source, and multi-day air pollution episode. The regional polluted continental aerosols mainly accumulated near surface by local anthropogenic emissions mixed with dust aerosols, downwash from the upper planetary boundary layer (PBL) and middle/lower troposphere (MLT), and further transported downwardly by large-scale cold fronts and warm conveyor belts. BB smoke from the Southeast Asia, mainly from forest burning in Indochina, were transported by westerlies around the altitude of 3 km from southern China to eastern China, further mixed with dust and FF aerosols in eastern China and experienced long-range transport over the subtropical Pacific Ocean. The three pollutant sources could all transport to eastern China, especially the YRD region around the latitude of 30° N, caused a structure of multi-layer pollutants and well mixed pollutants there. These solar absorption aerosols from FF, BB and dust could also cause significant feedback with MLT meteorology and then enhance local anthropogenic pollution. This study highlights the importance of intensive vertical measurement in the eastern China and the downwind Pacific Ocean with a focus of understanding the complex physical and chemical processes of various pollution sources, and also raises the needs of quantitative understanding of environmental and climate impacts of these pollution sources in regional even global scales.


2018 ◽  
Vol 18 (22) ◽  
pp. 16345-16361 ◽  
Author(s):  
Derong Zhou ◽  
Ke Ding ◽  
Xin Huang ◽  
Lixia Liu ◽  
Qiang Liu ◽  
...  

Abstract. Anthropogenic fossil fuel (FF) combustion, biomass burning (BB) and desert dust are the main sources of air pollutants around the globe but are particularly intensive and important for air quality in Asia in spring. In this study, we investigate the vertical distribution, transport characteristics, source contribution and meteorological feedback of these aerosols in a unique pollution episode that occurred in eastern Asia based on various measurement data and modeling methods. In this episode, the Yangtze River Delta (YRD) in eastern China experienced persistent air pollution, dramatically changing from secondary fine particulate pollution to dust pollution in late March 2015. The Eulerian and Lagrangian models were conducted to investigate the vertical structure, transport characteristics and mechanisms of the multi-scale, multisource and multiday air pollution episode. The regional polluted continental aerosols mainly accumulated near the surface, mixed with dust aerosol downwash from the upper planetary boundary layer (PBL) and middle–lower troposphere (MLT), and further transported by large-scale cold fronts and warm conveyor belts. BB smoke from Southeast Asia was transported by westerlies around the altitude of 3 km from southern China, was further mixed with dust and FF aerosols in eastern China and experienced long-range transport over the Pacific. These pollutants could all be transported to the YRD region and cause a structure of multilayer pollution there. These pollutants could also cause significant feedback with MLT meteorology and then enhance local anthropogenic pollution. This study highlights the importance of intensive vertical measurement in eastern China and the downwind Pacific Ocean and raises the need for quantitative understanding of environmental and climate impacts of these pollution sources.


2011 ◽  
Vol 11 (14) ◽  
pp. 7319-7332 ◽  
Author(s):  
C. Deng ◽  
G. Zhuang ◽  
K. Huang ◽  
J. Li ◽  
R. Zhang ◽  
...  

Abstract. PM2.5 and TSP samples were collected at the summit of Mountain Tai (MT) (1534 m a.s.l.) in spring 2006/2007 and summer 2006 to investigate the characteristics of aerosols over central eastern China. For comparison, aerosol samples were also collected at Tazhong, Urumqi, and Tianchi in Xinjiang in northwestern China, Duolun and Yulin in northern China, and two urban sites in the megacities, Beijing and Shanghai, in 2007. Daily mass concentrations of TSP and PM2.5 ranged from 39.6–287.6 μg m−3 and 17.2–235.7 μg m−3 respectively at the summit of MT. Averaged concentrations of PM2.5 showed a pronounced seasonal variation with higher concentration in summer than spring. 17 water-soluble ions (SO42−, NO3−, Cl−, F−, PO43−, NO2−, CH3COO−, CH2C2O42−, C2H4C2O42−, HCOO−, MSA, C2O42−, NH4+, Ca2+, K+, Mg2+, Na+), and 19 elements of all samples were measured. SO42−, NO3−, and NH4+ were the major water-soluble species in PM2.5, accounting for 61.50 % and 72.65 % of the total measured ions in spring and summer, respectively. The average ratio of PM2.5/TSP was 0.37(2006) and 0.49(2007) in spring, while up to 0.91 in summer, suggesting that aerosol particles were primarily comprised of fine particles in summer and of considerable coarse particles in spring. Crustal elements (e.g., Ca, Mg, Al, Fe, etc.) showed higher concentration in spring than summer, while most of the pollution species (SO42−, NO3−, K+, NO2−, NH4+, Cl−, organic acids, Pb, Zn, Cd, and Cr) from local/regional anthropogenic emissions or secondary formation presented higher concentration in summer. The ratio of Ca/Al suggested the impact of Asian dust from the western deserts on the air quality in this region. The high concentration of K+ in PM2.5 (4.41 μg m−3) and its good correlation with black carbon (r = 0.90) and oxalic acid (r = 0.87) suggested the severe pollution from biomass burning, which was proved to be a main source of fine particles over central eastern China in summer. The contribution of biomass burning to the fine particle at MT accounted for 7.56 % in spring and 36.71 % in summer, and even reached to 81.58 % on a day. As and Pb were two of the most enriched elements. The long-range transport of aerosols spread the heavy pollution from coal-mining/coal-ash to everywhere over China. Anthropogenic air-pollution was evidently rather severe at MT, though it has been declared by UNESCO to be a World Heritage site.


2010 ◽  
Vol 10 (9) ◽  
pp. 20975-21021 ◽  
Author(s):  
C. Deng ◽  
G. Zhuang ◽  
K. Huang ◽  
J. Li ◽  
R. Zhang ◽  
...  

Abstract. PM2.5 and TSP samples were collected at the summit of Mountain Tai (MT) (1534 m a.s.l.) in spring 2006/2007 and summer 2006 to investigate the characteristics of aerosols over central eastern China. For comparison, aerosol samples were also collected at Tazhong, Urumqi, Tianchi in Xinjiang in northwestern China, Duolun and Yulin in northern China, and two urban sites in the megacities, Beijing and Shanghai, in spring 2007. Daily mass concentrations of TSP and PM2.5 ranged from 39.6–276.9 μg/m3 and 17.2–235.7 μg/m3 respectively at the summit of MT. Averaged concentrations of PM2.5 showed a pronounced seasonal variation with higher concentration in summer than spring. 17 water-soluble ions (SO42−, NO3−, Cl−, F−, PO43−, NO2−, CH3COO−, CH2C2O42−, C2H4C2O42−, HCOO−, MSA, C2O42−, NH4+, Ca2+, K+, Mg2+, Na+), and 19 elements of 176 samples from MT were measured. SO42−, NO3−, and NH4+ were the major water-soluble species in PM2.5, accounting for 61.5% and 73.8% of the total measured ions in spring and summer, respectively. The average ratio of PM2.5/TSP was 0.37(2006) and 0.49(2007) in spring, while up to 0.91 in summer, suggesting that aerosol particles were primarily comprised of fine particles in summer and of considerable coarse particles in spring. Crustal elements (e.g., Ca, Mg, Al, Fe, etc.) showed higher concentration in spring than summer, while most pollution species (SO42−, NO3−, K+, NO2−, NH4+, Cl−, organic acids, Pb, Zn, Cd, and Cr) from local/regional anthropogenic emissions and secondary formation presented higher concentration in summer. The ratio of Ca/Al and back trajectories of air mass suggested the impact of Asian dust from Gobi and deserts on the air quality in this region. The high concentration of K+ in aerosols (4.56 μg/m3) and its good correlation with black carbon (r = 0.90), oxalic acid (r = 0.87), and Cl− (r = 0.71) were due to the severe pollution from biomass burning, which was proved to be a main source of fine particles over central eastern China in summer. Biomass burning contributed 36.71% of PM2.5 in mass in summer. As and Pb were two of the most enriched elements, especially in spring both for TSP and PM2.5, which revealed that the long-range transport of aerosols spread the heavy pollution from coal burning everywhere over China. Anthropogenic aerosols at MT were evidently rather severe at MT, though it has been declared by UNESCO to be a World Heritage site.


2019 ◽  
Vol 19 (11) ◽  
pp. 7759-7774 ◽  
Author(s):  
Qiuji Ding ◽  
Jianning Sun ◽  
Xin Huang ◽  
Aijun Ding ◽  
Jun Zou ◽  
...  

Abstract. Aerosols can not only participate in fog formation by acting as condensation nuclei of droplets but also modify the meteorological conditions such as air temperature and moisture, planetary boundary layer height (PBLH) and regional circulation during haze events. The impact of aerosols on fog formation, yet to be revealed, can be critical in understanding and predicting fog–haze events. In this study, we used the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) to investigate a heavy fog event during a multiday intense haze pollution episode in early December 2013 in the Yangtze River Delta (YRD) region in eastern China. Using the WRF-Chem model, we conducted four parallel numerical experiments to evaluate the roles of aerosol–radiation interaction (ARI), aerosol–cloud interaction (ACI), black carbon (BC) and non-BC aerosols in the formation and maintenance of the heavy fog event. We find that only when the aerosols' feedback processes are considered can the model capture the haze pollution and the fog event well. And the effects of ARI during the fog–haze episode in early December 2013 played a dominant role, while the effects of ACI were negligible. Furthermore, our analyses show that BC was more important in inducing fog formation in the YRD region on 7 December than non-BC aerosols. The dome effect of BC leads to an increase in air moisture over the sea by reducing PBLH and weakening vertical mixing, thereby confining more water vapor to the near-surface layer. The strengthened daytime onshore flow by a cyclonic wind anomaly, induced by contrast temperature perturbation over land and sea, transported moister air to the YRD region, where the suppressed PBLH and weakened daytime vertical mixing maintained the high moisture level. Then heavy fog formed due to the surface cooling at night. This study highlights the importance of anthropogenic emissions in the formation of advection–radiation fog in the polluted coastal areas.


2021 ◽  
Vol 13 (10) ◽  
pp. 2001
Author(s):  
Antonella Boselli ◽  
Alessia Sannino ◽  
Mariagrazia D’Emilio ◽  
Xuan Wang ◽  
Salvatore Amoruso

During the summer of 2017, multiple huge fires occurred on Mount Vesuvius (Italy), dispersing a large quantity of ash in the surrounding area ensuing the burning of tens of hectares of Mediterranean scrub. The fires affected a very large area of the Vesuvius National Park and the smoke was driven by winds towards the city of Naples, causing daily peak values of particulate matter (PM) concentrations at ground level higher than the limit of the EU air quality directive. The smoke plume spreading over the area of Naples in this period was characterized by active (lidar) and passive (sun photometer) remote sensing as well as near-surface (optical particle counter) observational techniques. The measurements allowed us to follow both the PM variation at ground level and the vertical profile of fresh biomass burning aerosol as well as to analyze the optical and microphysical properties. The results evidenced the presence of a layer of fine mode aerosol with large mean values of optical depth (AOD > 0.25) and Ångstrom exponent (γ > 1.5) above the observational site. Moreover, the lidar ratio and aerosol linear depolarization obtained from the lidar observations were about 40 sr and 4%, respectively, consistent with the presence of biomass burning aerosol in the atmosphere.


2021 ◽  
pp. 014459872098811
Author(s):  
Yuanyuan Zhang ◽  
Zhanli Ren ◽  
Youlu Jiang ◽  
Jingdong Liu

To clarify the characteristics and enrichment rules of Paleogene tight sandstone reservoirs inside the rifted-basin of Eastern China, the third member of Shahejie Formation (abbreviated as Es3) in Wendong area of Dongpu Depression is selected as the research object. It not only clarified the geochemical characteristics of oil and natural gas in the Es3 of Wendong area through testing and analysis of crude oil biomarkers, natural gas components and carbon isotopes, etc.; but also compared and explained the types and geneses of oil and gas reservoirs in slope zone and sub-sag zone by matching relationship between the porosity evolution of tight reservoirs and the charging process of hydrocarbons. Significant differences have been found between the properties and the enrichment rules of hydrocarbon reservoirs in different structural areas in Wendong area. The study shows that the Paleogene hydrocarbon resources are quasi-continuous distribution in Wendong area. The late kerogen pyrolysis gas, light crude oil, medium crude oil, oil-cracked gas and the early kerogen pyrolysis gas are distributed in a semicircle successively, from the center of sub-sag zone to the uplift belt, that is the result of two discontinuous hydrocarbon charging. Among them, the slope zone is dominated by early conventional filling of oil-gas mixture (at the late deposition period of Dongying Formation, about 31–27 Ma ago), while the reservoirs are gradually densified in the late stage without large-scale hydrocarbon charging (since the deposition stage of Minghuazhen Formation, about 6–0 Ma). In contrast, the sub-sag zone is lack of oil reservoirs, but a lot of late kerogen pyrolysis gas reservoirs are enriched, and the reservoir densification and hydrocarbon filling occur in both early and late stages.


2021 ◽  
Vol 13 (5) ◽  
pp. 892
Author(s):  
Xiaomei Li ◽  
Pinhua Xie ◽  
Ang Li ◽  
Jin Xu ◽  
Zhaokun Hu ◽  
...  

This paper studied the method for converting the aerosol extinction to the mass concentration of particulate matter (PM) and obtained the spatio-temporal distribution and transportation of aerosol, nitrogen dioxide (NO2), sulfur dioxide (SO2), and formaldehyde (HCHO) based on multi-axis differential optical absorption spectroscopy (MAX-DOAS) observations in Dalian (38.85°N, 121.36°E), Qingdao (36.35°N, 120.69°E), and Shanghai (31.60°N, 121.80°E) from 2019 to 2020. The PM2.5 measured by the in situ instrument and the PM2.5 simulated by the conversion formula showed a good correlation. The correlation coefficients R were 0.93 (Dalian), 0.90 (Qingdao), and 0.88 (Shanghai). A regular seasonality of the three trace gases is found, but not for aerosols. Considerable amplitudes in the weekly cycles were determined for NO2 and aerosols, but not for SO2 and HCHO. The aerosol profiles were nearly Gaussian, and the shapes of the trace gas profiles were nearly exponential, except for SO2 in Shanghai and HCHO in Qingdao. PM2.5 presented the largest transport flux, followed by NO2 and SO2. The main transport flux was the output flux from inland to sea in spring and winter. The MAX-DOAS and the Copernicus Atmosphere Monitoring Service (CAMS) models’ results were compared. The overestimation of NO2 and SO2 by CAMS is due to its overestimation of near-surface gas volume mixing ratios.


Author(s):  
Na Li ◽  
Baofeng Jiao ◽  
Lingkun Ran ◽  
Zongting Gao ◽  
Shouting Gao

AbstractWe investigated the influence of upstream terrain on the formation of a cold frontal snowband in Northeast China. We conducted numerical sensitivity experiments that gradually removed the upstream terrain and compared the results with a control experiment. Our results indicate a clear negative effect of upstream terrain on the formation of snowbands, especially over large-scale terrain. By thoroughly examining the ingredients necessary for snowfall (instability, lifting and moisture), we found that the release of mid-level conditional instability, followed by the release of low-level or near surface instabilities (inertial instability, conditional instability or conditional symmetrical instability), contributed to formation of the snowband in both experiments. The lifting required for the release of these instabilities was mainly a result of frontogenetic forcing and upper gravity waves. However, the snowband in the control experiment developed later and was weaker than that in the experiment without upstream terrain. Two factors contributed to this negative topographic effect: (1) the mountain gravity waves over the upstream terrain, which perturbed the frontogenetic circulation by rapidly changing the vertical motion and therefore did not favor the release of instabilities in the absence of persistent ascending motion; and (2) the decrease in the supply of moisture as a result of blocking of the upstream terrain, which changed both the moisture and instability structures leeward of the mountains. A conceptual model is presented that shows the effects of the instabilities and lifting on the development of cold frontal snowbands in downstream mountains.


Sign in / Sign up

Export Citation Format

Share Document