scholarly journals Implication of tropical lower stratospheric cooling in recent trends in tropical circulation and deep convective activity

2019 ◽  
Vol 19 (4) ◽  
pp. 2655-2669 ◽  
Author(s):  
Kunihiko Kodera ◽  
Nawo Eguchi ◽  
Rei Ueyama ◽  
Yuhji Kuroda ◽  
Chiaki Kobayashi ◽  
...  

Abstract. Large changes in tropical circulation from the mid-to-late 1990s to the present, in particular changes related to the summer monsoon and cooling of the sea surface in the equatorial eastern Pacific, are noted. The cause of such recent decadal variations in the tropics was studied using a meteorological reanalysis dataset. Cooling of the equatorial southeastern Pacific Ocean occurred in association with enhanced cross-equatorial southerlies that were associated with a strengthening of the deep ascending branch of the boreal summer Hadley circulation over the continental sector connected to stratospheric circulation. From boreal summer to winter, the anomalous convective activity center moves southward following the seasonal march to the equatorial Indian Ocean–Maritime Continent region, which strengthens the surface easterlies over the equatorial central Pacific. Accordingly, ocean surface cooling extends over the equatorial central Pacific. We suggest that the fundamental cause of the recent decadal change in the tropical troposphere and the ocean is a poleward shift of convective activity that resulted from a strengthening of extreme deep convection penetrating into the tropical tropopause layer, particularly over the African and Asian continents and adjacent oceans. We conjecture that the increase in extreme deep convection is produced by a combination of land surface warming due to increased CO2 and a reduction of static stability in the tropical tropopause layer due to tropical stratospheric cooling.

2018 ◽  
Author(s):  
Kunihiko Kodera ◽  
Nawo Eguchi ◽  
Rei Ueyama ◽  
Yuhji Kuroda ◽  
Chiaki Kobayashi

Abstract. Large changes in tropical circulation, in particular those related to the summer monsoon and cooling of the sea surface in the equatorial eastern Pacific, were noted from the mid to late 1990s. The cause of such recent decadal variations in the tropics was studied by making use of a meteorological reanalysis dataset. Cooling of the equatorial southeastern Pacific Ocean occurred in association with enhanced cross-equatorial southerlies, which resulted from a strengthening and poleward shift of the rising branch of the boreal summer Hadley circulation connected to the stratospheric Brewer‒Dobson circulation. From boreal summer to winter, the anomalous convective activity centre moves southward following the seasonal march to the equatorial Indian Ocean‒Maritime Continent region, which strengthens the surface easterlies over the equatorial central Pacific. Accordingly, ocean surface cooling extends over the equatorial central Pacific. We suggest that the fundamental factor causing the recent decadal change in the tropical troposphere and the ocean is a poleward shift of the rising branch of the summertime Hadley cell, which can result from a strengthening of extreme deep convection penetrating into the tropical tropopause layer, in particular over the continents of Africa and Asia, and adjacent oceans. We conjecture that this effect is produced by a combination of land surface warming due to increased CO2 and a reduction of static stability in the tropical tropopause layer due to tropical stratospheric cooling.


2021 ◽  
Author(s):  
Kunihiko Kodera ◽  
Nawo Eguchi ◽  
Rei Ueyama ◽  
Beatriz Funatsu ◽  
Marco Gaetani ◽  
...  

<p>Previous studies have suggested that the recent increase in tropical extreme deep convection, in particular over Asia and Africa during the boreal summer, has occurred in association with a cooling in the tropical lower stratosphere. The present study is focused on the Sahel region of West Africa, where an increased occurrence of extreme precipitation events has been reported over recent decades. The results show that the changes since the 1980s involve a cooling trend in the tropical lower stratosphere and tropopause layer, combined with a warming in the troposphere. This feature is similar to that which might result from increased greenhouse gas levels. It is suggested that the decrease in the vertical temperature gradient in the tropical tropopause region enhances extreme deep convection where penetrating convection is frequent, whereas tropospheric warming suppresses the shallower convection. The essential feature of the recent changes over the tropics is therefore the depth of convection, rather than the total amount of surface precipitation. This could enhance cooling in the lower stratosphere through decrease in ozone concentration.</p><p> </p>


2007 ◽  
Vol 7 (14) ◽  
pp. 3713-3736 ◽  
Author(s):  
B. N. Duncan ◽  
S. E. Strahan ◽  
Y. Yoshida ◽  
S. D. Steenrod ◽  
N. Livesey

Abstract. We present a modeling study of the troposphere-to-stratosphere transport (TST) of pollution from major biomass burning regions to the tropical upper troposphere and lower stratosphere (UT/LS). TST occurs predominately through 1) slow ascent in the tropical tropopause layer (TTL) to the LS and 2) quasi-horizontal exchange to the lowermost stratosphere (LMS). We show that biomass burning pollution regularly and significantly impacts the composition of the TTL, LS, and LMS. Carbon monoxide (CO) in the LS in our simulation and data from the Aura Microwave Limb Sounder (MLS) shows an annual oscillation in its composition that results from the interaction of an annual oscillation in slow ascent from the TTL to the LS and seasonal variations in sources, including a semi-annual oscillation in CO from biomass burning. The impacts of CO sources that peak when ascent is seasonally low are damped (e.g. Southern Hemisphere biomass burning) and vice-versa for sources that peak when ascent is seasonally high (e.g. extra-tropical fossil fuels). Interannual variation of CO in the UT/LS is caused primarily by year-to-year variations in biomass burning and the locations of deep convection. During our study period, 1994–1998, we find that the highest concentrations of CO in the UT/LS occurred during the strong 1997–1998 El Niño event for two reasons: i. tropical deep convection shifted to the eastern Pacific Ocean, closer to South American and African CO sources, and ii. emissions from Indonesian biomass burning were higher. This extreme event can be seen as an upper bound on the impact of biomass burning pollution on the UT/LS. We estimate that the 1997 Indonesian wildfires increased CO in the entire TTL and tropical LS (>60 mb) by more than 40% and 10%, respectively, for several months. Zonal mean ozone increased and the hydroxyl radical decreased by as much as 20%, increasing the lifetimes and, subsequently TST, of trace gases. Our results indicate that the impact of biomass burning pollution on the UT/LS is likely greatest during an El Niño event due to favorable dynamics and historically higher burning rates.


2015 ◽  
Vol 15 (12) ◽  
pp. 16655-16696 ◽  
Author(s):  
R. Newton ◽  
G. Vaughan ◽  
H. M. A. Ricketts ◽  
L. L. Pan ◽  
A. J. Weinheimer ◽  
...  

Abstract. We present a series of ozonesonde profiles measured from Manus Island, Papua New Guinea, during February 2014. The experiment formed a part of a wider airborne campaign involving three aircraft based in Guam, to characterise the atmospheric composition above the tropical West Pacific in unprecedented detail. Thirty-nine ozonesondes were launched between 2 and 25 February, of which 34 gave good ozone profiles. Particular attention was paid to measuring the background current of the ozonesonde before launch, as this can amount to half the measured signal in the tropical tropopause layer (TTL). An unexpected contamination event affected these measurements and required a departure from standard operating procedures for the ozonesondes. Comparison with aircraft measurements allows validation of the measured ozone profiles and confirms that for well-characterized sondes (background current <50 nA) a constant background current should be assumed throughout the profile, equal to the minimum value measured during preparation just before launch. From this set of 34 ozonesondes, the minimum reproducible ozone concentration measured in the TTL was 12–13 ppbv; no examples of near-zero ozone concentration as reported by other recent papers were measured. The lowest ozone concentrations coincided with outflow from extensive deep convection to the east of Manus, consistent with uplift of ozone-poor air from the boundary layer. However, these minima were lower than the ozone concentration measured through most of the boundary layer, and were matched only by measurements at the surface in Manus.


2015 ◽  
Vol 15 (11) ◽  
pp. 6467-6486 ◽  
Author(s):  
W. Frey ◽  
R. Schofield ◽  
P. Hoor ◽  
D. Kunkel ◽  
F. Ravegnani ◽  
...  

Abstract. In this study we examine the simulated downward transport and mixing of stratospheric air into the upper tropical troposphere as observed on a research flight during the SCOUT-O3 campaign in connection with a deep convective system. We use the Advanced Research Weather and Research Forecasting (WRF-ARW) model with a horizontal resolution of 333 m to examine this downward transport. The simulation reproduces the deep convective system, its timing and overshooting altitudes reasonably well compared to radar and aircraft observations. Passive tracers initialised at pre-storm times indicate the downward transport of air from the stratosphere to the upper troposphere as well as upward transport from the boundary layer into the cloud anvils and overshooting tops. For example, a passive ozone tracer (i.e. a tracer not undergoing chemical processing) shows an enhancement in the upper troposphere of up to about 30 ppbv locally in the cloud, while the in situ measurements show an increase of 50 ppbv. However, the passive carbon monoxide tracer exhibits an increase, while the observations show a decrease of about 10 ppbv, indicative of an erroneous model representation of the transport processes in the tropical tropopause layer. Furthermore, it could point to insufficient entrainment and detrainment in the model. The simulation shows a general moistening of air in the lower stratosphere, but it also exhibits local dehydration features. Here we use the model to explain the processes causing the transport and also expose areas of inconsistencies between the model and observations.


2021 ◽  
Author(s):  
Maximilien Bolot ◽  
Stephan Fueglistaler

&lt;p&gt;The role played by tropical storms in the tropical tropopause layer (TTL), the transitional layer regulating the flux into the stratosphere of trace gases affecting radiation and the ozone layer, has been a long-standing open question. Progress has been slow because of computational limitations and challenging conditions for measurements and most numerical studies have used simulations over limited domains whose results must be upscaled to the tropical surface to infer global impacts. We compute the first global observational estimate of the convective ice flux at near tropical tropopause levels by using spaceborne lidar measurements from CALIOP. The calculation uses a method to convert from lidar extinction to sedimenting ice flux and uses error propagation to provide margins of uncertainty. We show that, at any given level in the TTL, the sedimenting ice flux exceeds the inflow of vapor computed from ERA5 reanalysis, revealing additional ice transport and allowing to deduce the advective ice flux as a function of altitude. The contribution to this flux of large-scale motions (resolved by ERA5) is computed and the residual is hypothesized to represent the flux of ice on the convective scale. Results show without ambiguity that the upward ice flux in deep convection dominates moisture transport up to close to the level of the cold point tropopause.&lt;/p&gt;


2010 ◽  
Vol 10 (8) ◽  
pp. 3615-3627 ◽  
Author(s):  
C. D. Homan ◽  
C. M. Volk ◽  
A. C. Kuhn ◽  
A. Werner ◽  
J. Baehr ◽  
...  

Abstract. We present airborne in situ measurements made during the AMMA (African Monsoon Multidisciplinary Analysis)/SCOUT-O3 campaign between 31 July and 17 August 2006 on board the M55 Geophysica aircraft, based in Ouagadougou, Burkina Faso. CO2 and N2O were measured with the High Altitude Gas Analyzer (HAGAR), CO was measured with the Cryogenically Operated Laser Diode (COLD) instrument, and O3 with the Fast Ozone ANalyzer (FOZAN). We analyse the data obtained during five local flights to study the dominant transport processes controlling the tropical tropopause layer (TTL, here ~350–375 K) and lower stratosphere above West-Africa: deep convection up to the level of main convective outflow, overshooting of deep convection, and horizontal inmixing across the subtropical tropopause. Besides, we examine the morphology of the stratospheric subtropical barrier. Except for the flight of 13 August, distinct minima in CO2 mixing ratios indicate convective outflow of boundary layer air in the TTL. The CO2 profiles show that the level of main convective outflow was mostly located at potential temperatures between 350 and 360 K, and for 11 August reached up to 370 K. While the CO2 minima indicate quite significant convective influence, the O3 profiles suggest that the observed convective signatures were mostly not fresh, but of older origin (several days or more). When compared with the mean O3 profile measured during a previous campaign over Darwin in November 2005, the O3 minimum at the main convective outflow level was less pronounced over Ouagadougou. Furthermore O3 mixing ratios were much higher throughout the whole TTL and, unlike over Darwin, rarely showed low values observed in the regional boundary layer. Signatures of irreversible mixing following overshooting of convective air were scarce in the tracer data. Some small signatures indicative of this process were found in CO2 profiles between 390 and 410 K during the flights of 4 and 8 August, and in CO data at 410 K on 7 August. However, the absence of expected corresponding signatures in other tracer data makes this evidence inconclusive, and overall there is little indication from the observations that overshooting convection has a profound impact on gas-phase tracer TTL composition during AMMA. We find the amount of photochemically aged air isentropically mixed into the TTL across the subtropical tropopause to be not significant. Using the N2O observations we estimate the fraction of aged extratropical stratospheric air in the TTL to be 0.0±0.1 up to 370 K during the local flights. Above the TTL this fraction increases to 0.3±0.1 at 390 K. The subtropical barrier, as indicated by the slope of the correlation between N2O and O3 between 415 and 490 K, does not appear as a sharp border between the tropics and extratropics, but rather as a gradual transition region between 10° N and 25° N where isentropic mixing between these two regions may occur.


2019 ◽  
Vol 19 (9) ◽  
pp. 6459-6479 ◽  
Author(s):  
Iris-Amata Dion ◽  
Philippe Ricaud ◽  
Peter Haynes ◽  
Fabien Carminati ◽  
Thibaut Dauhut

Abstract. The contribution of deep convection to the amount of water vapour and ice in the tropical tropopause layer (TTL) from the tropical upper troposphere (UT; around 146 hPa) to the tropopause level (TL; around 100 hPa) is investigated. Ice water content (IWC) and water vapour (WV) measured in the UT and the TL by the Microwave Limb Sounder (MLS; Version 4.2) are compared to the precipitation (Prec) measured by the Tropical Rainfall Measurement Mission (TRMM; Version 007). The two datasets, gridded within 2∘ × 2∘ horizontal bins, have been analysed during the austral convective season, December, January, and February (DJF), from 2004 to 2017. MLS observations are performed at 01:30 and 13:30 local solar time, whilst the Prec dataset is constructed with a time resolution of 1 h. The new contribution of this study is to provide a much more detailed picture of the diurnal variation of ice than is provided by the very limited (two per day) MLS observations. Firstly, we show that IWC represents 70 % and 50 % of the total water in the tropical UT and TL, respectively, and that Prec is spatially highly correlated with IWC in the UT (Pearson's linear coefficient R=0.7). We propose a method that uses Prec as a proxy for deep convection bringing ice up to the UT and TL during the growing stage of convection, in order to estimate the amount of ice injected into the UT and the TL, respectively. We validate the method using ice measurements from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) during the period DJF 2009–2010. Next, the diurnal cycle of injection of IWC into the UT and the TL by deep convection is calculated by the difference between the maximum and the minimum in the estimated diurnal cycle of IWC in these layers and over selected convective zones. Six tropical highly convective zones have been chosen: South America, South Africa, Pacific Ocean, Indian Ocean, and the Maritime Continent region, split into land (MariCont-L) and ocean (MariCont-O). IWC injection is found to be 2.73 and 0.41 mg m−3 over tropical land in the UT and TL, respectively, and 0.60 and 0.13 mg m−3 over tropical ocean in the UT and TL, respectively. The MariCont-L region has the greatest ice injection in both the UT and TL (3.34 and 0.42–0.56 mg m−3, respectively). The MariCont-O region has less ice injection than MariCont-L (0.91 mg m−3 in the UT and 0.16–0.34 mg m−3 in TL) but has the highest diurnal minimum value of IWC in the TL (0.34–0.37 mg m−3) among all oceanic zones.


2007 ◽  
Vol 7 (1) ◽  
pp. 2389-2475 ◽  
Author(s):  
J.-P. Pommereau ◽  
A. Garnier ◽  
G. Held ◽  
A.-M. Gomes ◽  
F. Goutail ◽  
...  

Abstract. HIBISCUS was a field campaign for investigating the impact of deep convection on the Tropical Tropopause Layer (TTL) and the Lower Stratosphere, which took place during the Southern Hemisphere summer in February–March 2004 in the State of São Paulo, Brazil. Its objective was to provide a set of new observational data on meteorology, tracers of horizontal and vertical transport, water vapour, clouds, and chemistry in the tropical UT/LS from balloon observations at local scale over a land convective area, as well as at global scale using circumnavigating long-duration balloons. Overall, the composition of the TTL, the region between 14 and 19 km of intermediate lapse rate between the almost adiabatic upper troposphere and the stable stratosphere, appears highly variable. Tracers and ozone measurements performed at both the local and the global scale indicate a strong quasi-horizontal isentropic exchange with the lowermost mid-latitude stratosphere suggesting that the barrier associated to the tropical jet is highly permeable at these levels in summer. But the project also provides clear indications of strong episodic updraught of cold air, short-lived tracers, low ozone, humidity and ice particles across the lapse rate tropopause at about 15 km, up to 18 or 19 km at 420–440 K potential levels in the lower stratosphere, suggesting that, in contrast to oceanic convection penetrating little the stratosphere, fast daytime developing land convective systems could be a major mechanism in the troposphere-stratosphere exchange at the global scale. The present overview is meant to provide the background of the project, as well as overall information on the instrumental tools available, on the way they have been used within the highly convective context of the South Atlantic Convergence Zone, and a brief summary of the results, which will be detailed in several other papers of this special issue.


2019 ◽  
Vol 19 (23) ◽  
pp. 14621-14636 ◽  
Author(s):  
Xun Wang ◽  
Andrew E. Dessler ◽  
Mark R. Schoeberl ◽  
Wandi Yu ◽  
Tao Wang

Abstract. We use a forward Lagrangian trajectory model to diagnose mechanisms that produce the water vapor seasonal cycle observed by the Microwave Limb Sounder (MLS) and reproduced by the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM) in the tropical tropopause layer (TTL). We confirm in both the MLS and GEOSCCM that the seasonal cycle of water vapor entering the stratosphere is primarily determined by the seasonal cycle of TTL temperatures. However, we find that the seasonal cycle of temperature predicts a smaller seasonal cycle of TTL water vapor between 10 and 40∘ N than observed by MLS or simulated by the GEOSCCM. Our analysis of the GEOSCCM shows that including evaporation of convective ice in the trajectory model increases both the simulated maximum value of the 100 hPa 10–40∘ N water vapor seasonal cycle and the seasonal-cycle amplitude. We conclude that the moistening effect from convective ice evaporation in the TTL plays a key role in regulating and maintaining the seasonal cycle of water vapor in the TTL. Most of the convective moistening in the 10–40∘ N range comes from convective ice evaporation occurring at the same latitudes. A small contribution to the moistening comes from convective ice evaporation occurring between 10∘ S and 10∘ N. Within the 10–40∘ N band, the Asian monsoon region is the most important region for convective moistening by ice evaporation during boreal summer and autumn.


Sign in / Sign up

Export Citation Format

Share Document