scholarly journals Fourier transform infrared time series of tropospheric HCN in eastern China: seasonality, interannual variability, and source attribution

2020 ◽  
Vol 20 (9) ◽  
pp. 5437-5456
Author(s):  
Youwen Sun ◽  
Cheng Liu ◽  
Lin Zhang ◽  
Mathias Palm ◽  
Justus Notholt ◽  
...  

Abstract. We analyzed seasonality and interannual variability of tropospheric hydrogen cyanide (HCN) columns in densely populated eastern China for the first time. The results were derived from solar absorption spectra recorded with a ground-based high-spectral-resolution Fourier transform infrared (FTIR) spectrometer in Hefei (31∘54′ N, 117∘10′ E) between 2015 and 2018. The tropospheric HCN columns over Hefei, China, showed significant seasonal variations with three monthly mean peaks throughout the year. The magnitude of the tropospheric HCN column peaked in May, September, and December. The tropospheric HCN column reached a maximum monthly mean of (9.8±0.78)×1015 molecules cm−2 in May and a minimum monthly mean of (7.16±0.75)×1015 molecules cm−2 in November. In most cases, the tropospheric HCN columns in Hefei (32∘ N) are higher than the FTIR observations in Ny-Ålesund (79∘ N), Kiruna (68∘ N), Bremen (53∘ N), Jungfraujoch (47∘ N), Toronto (44∘ N), Rikubetsu (43∘ N), Izana (28∘ N), Mauna Loa (20∘ N), La Reunion Maido (21∘ S), Lauder (45∘ S), and Arrival Heights (78∘ S) that are affiliated with the Network for Detection of Atmospheric Composition Change (NDACC). Enhancements of tropospheric HCN column were observed between September 2015 and July 2016 compared to the same period of measurements in other years. The magnitude of the enhancement ranges from 5 % to 46 % with an average of 22 %. Enhancement of tropospheric HCN (ΔHCN) is correlated with the concurrent enhancement of tropospheric CO (ΔCO), indicating that enhancements of tropospheric CO and HCN were due to the same sources. The GEOS-Chem tagged CO simulation, the global fire maps, and the potential source contribution function (PSCF) values calculated using back trajectories revealed that the seasonal maxima in May are largely due to the influence of biomass burning in Southeast Asia (SEAS) (41±13.1 %), Europe and boreal Asia (EUBA) (21±9.3 %), and Africa (AF) (22±4.7 %). The seasonal maxima in September are largely due to the influence of biomass burnings in EUBA (38±11.3 %), AF (26±6.7 %), SEAS (14±3.3 %), and North America (NA) (13.8±8.4 %). For the seasonal maxima in December, dominant contributions are from AF (36±7.1 %), EUBA (21±5.2 %), and NA (18.7±5.2 %). The tropospheric HCN enhancement between September 2015 and July 2016 at Hefei (32∘ N) was attributed to an elevated influence of biomass burnings in SEAS, EUBA, and Oceania (OCE) in this period. In particular, an elevated number of fires in OCE in the second half of 2015 dominated the tropospheric HCN enhancement between September and December 2015. An elevated number of fires in SEAS in the first half of 2016 dominated the tropospheric HCN enhancement between January and July 2016.

2020 ◽  
Author(s):  
Youwen Sun ◽  
Cheng Liu ◽  
Lin Zhang ◽  
Mathias Palm ◽  
Justus Notholt ◽  
...  

Abstract. We analyzed seasonality and interannual variability of tropospheric HCN column amounts in densely populated eastern China for the first time. The results were derived from solar absorption spectra recorded with ground-based high spectral resolution Fourier transform infrared (FTIR) spectrometer at Hefei (117°10′ E, 31°54′ N) between 2015 and 2018. The tropospheric HCN columns over Hefei, China showed significant seasonal variations with three monthly mean peaks throughout the year. The magnitude of the tropospheric HCN column peak in May > September > December. The tropospheric HCN column reached a maximum of (9.8 ± 0.78) × 1015 molecules/cm2 in May and a minimum of (7.16 ± 0.75) × 1015 molecules/cm2 in November. In most cases, the tropospheric HCN columns at Hefei (32° N) are higher than the FTIR observations at Ny Alesund (79° N), Kiruna (68° N), Bremen (53° N), Jungfraujoch (47° N), Toronto (44° N), Rikubetsu (43° N), Izana (28° N), Mauna Loa (20° N), La Reunion Maido (21° S), Lauder (45° S), and Arrival Heights (78° S) that are affiliated with the Network for Detection of Atmospheric Composition Change (NDACC). Enhancements of the tropospheric HCN columns were observed between September 2015 and July 2016 compared to the counterpart measurements in other years. The magnitude of the enhancement ranges from 5 to 46 % with an average of 22 %. Enhancement of tropospheric HCN (ΔHCN) is correlated with the coincident enhancement of tropospheric CO (ΔCO), indicating that enhancements of tropospheric CO and HCN were due to the same sources. The GEOS-Chem tagged CO simulation, the global fire maps and the PSCFs (Potential Source Contribution Function) calculated using back trajectories revealed that the seasonal maxima in May is largely due to the influence of biomass burning in South Eastern Asia (SEAS) (41 ± 13.1 %), Europe and Boreal Asia (EUBA) (21 ± 9.3 %) and Africa (AF) (22 ± 4.7 %). The seasonal maxima in September is largely due to the influence of biomass burnings in EUBA (38 ± 11.3 %), AF (26 ± 6.7 %), SEAS (14 ± 3.3 %), and Northern America (NA) (13.8 ± 8.4 %). For the seasonal maxima in December, dominant contributions are from AF (36 ± 7.1 %), EUBA (21 ± 5.2 %), and NA (18.7 ± 5.2 %). The tropospheric HCN enhancement between September 2015 and July 2016 at Hefei (32° N) were attributed to an elevated influence of biomass burnings in SEAS, EUBA, and Oceania (OCE) in this period. Particularly, an elevated fire number in OCE in the second half of 2015 dominated the tropospheric HCN enhancement in September–December 2015. An elevated fire number in SEAS in the first half of 2016 dominated the tropospheric HCN enhancement in January–July 2016.


2020 ◽  
Author(s):  
Youwen Sun ◽  
Pandai Dai ◽  
Hao Yin

<p>We analyzed seasonality and interannual variability of tropospheric HCN column amounts in densely populated eastern China for the first time. The results were derived from solar absorption spectra recorded with ground-based high spectral resolution Fourier transform infrared (FTIR) spectrometer at Hefei (117°10′E, 31°54′N) between 2015 and 2018. The tropospheric HCN columns over Hefei, China showed significant seasonal variations with three monthly mean peaks throughout the year. The magnitude of the tropospheric HCN column peak in May > September > December. The tropospheric HCN column reached a maximum of (9.8 ± 0.78) × 10<sup>15</sup> molecules/cm<sup>2</sup> in May and a minimum of (7.16 ± 0.75) × 10<sup>15</sup> molecules/cm<sup>2</sup> in November. In most cases, the tropospheric HCN columns at Hefei (32°N) are higher than the FTIR observations at Ny Alesund (79°N), Kiruna (68°N), Bremen (53°N), Jungfraujoch (47°N), Toronto (44°N), Rikubetsu (43°N), Izana (28°N), Mauna Loa (20°N), La Reunion Maido (21°S), Lauder (45°S), and Arrival Heights (78°S) that are affiliated with the Network for Detection of Atmospheric Composition Change (NDACC). Enhancements of the tropospheric HCN columns were observed between September 2015 and July 2016 compared to the counterpart measurements in other years. The magnitude of the enhancement ranges from 5 to 46% with an average of 22%. Enhancement of tropospheric HCN (ΔHCN) is correlated with the coincident enhancement of tropospheric CO (ΔCO), indicating that enhancements of tropospheric CO and HCN were due to the same sources. The GEOS-Chem tagged CO simulation, the global fire maps and the PSCFs (Potential Source Contribution Function) calculated using back trajectories revealed that the seasonal maxima in May is largely due to the influence of biomass burning in South Eastern Asia (SEAS) (41 ± 13.1%), Europe and Boreal Asia (EUBA) (21 ± 9.3%) and Africa (AF) (22 ± 4.7%). The seasonal maxima in September is largely due to the influence of biomass burnings in EUBA (38 ± 11.3%), AF (26 ± 6.7%), SEAS (14 ± 3.3%), and Northern America (NA) (13.8 ± 8.4%). For the seasonal maxima in December, dominant contributions are from AF (36 ± 7.1%), EUBA (21 ± 5.2%), and NA (18.7 ± 5.2%).The tropospheric HCN enhancement between September 2015 and July 2016 at Hefei (32°N) were attributed to an elevated influence of biomass burnings in SEAS, EUBA, and Oceania (OCE) in this period. Particularly, an elevated fire number in OCE in the second half of 2015 dominated the tropospheric HCN enhancement in September – December 2015. An elevated fire number in SEAS in the first half of 2016 dominated the tropospheric HCN enhancement in January – July 2016.</p>


2021 ◽  
Vol 14 (9) ◽  
pp. 5955-5976
Author(s):  
Masanori Takeda ◽  
Hideaki Nakajima ◽  
Isao Murata ◽  
Tomoo Nagahama ◽  
Isamu Morino ◽  
...  

Abstract. We have developed a procedure for retrieving atmospheric abundances of HFC-23 (CHF3) with a ground-based Fourier transform infrared (FTIR) spectrometer and analyzed the spectra observed at Rikubetsu, Japan (43.5∘ N, 143.8∘ E), and at Syowa Station, Antarctica (69.0∘ S, 39.6∘ E). The FTIR retrievals were carried out with the SFIT4 retrieval program, and the two spectral windows of 1138.5–1148.0 cm−1 and 1154.0–1160.0 cm−1 in the overlapping ν2 and ν5 vibrational–rotational transition bands of HFC-23 were used to avoid strong H2O absorption features. We considered O3, N2O, CH4, H2O, HDO, CFC-12 (CCl2F2), HCFC-22 (CHClF2), peroxyacetyl nitrate (PAN) (CH3C(O)OONO2), HCFC-141b (CH3CCl2F), and HCFC-142b (CH3CClF2) to be interfering species. Vertical profiles of H2O, HDO, and CH4 are preliminarily retrieved with other independent spectral windows because these profiles may induce large uncertainties in the HFC-23 retrieval. Each HFC-23 retrieval has only one piece of vertical information with sensitivity to HFC-23 in the troposphere and the lower stratosphere. Retrieval errors mainly arise from the systematic uncertainties of the spectroscopic parameters used to obtain HFC-23, H2O, HDO, and CH4 abundances. For comparison between FTIR-retrieved HFC-23 total columns and surface dry-air mole fractions provided by AGAGE (Advanced Global Atmospheric Gases Experiment), FTIR-retrieved HFC-23 dry-air column-averaged mole fractions (XHFC-23) were calculated. The FTIR-retrieved XHFC-23 values at Rikubetsu and Syowa Station have negative biases of −15 % to −20 % and −25 % compared to the AGAGE datasets, respectively. These negative biases might mainly come from systematic uncertainties of HFC-23 spectroscopic parameters. The trend of the FTIR-retrieved XHFC-23 data at Rikubetsu was derived for December to February (DJF) observations, which are considered to represent the background values when an air mass reaching Rikubetsu has the least influence by transport of HFC-23 emissions from nearby countries. The DJF trend of Rikubetsu over the 1997–2009 period is 0.810 ± 0.093 ppt yr−1 (ppt: parts per trillion), which is in good agreement with the trend derived from the annual global mean datasets of the AGAGE 12-box model for the same period (0.820 ± 0.013 ppt yr−1). The DJF trend of Rikubetsu over the 2008–2019 period is 0.928 ± 0.108 ppt yr−1, which is consistent with the trend in the AGAGE in situ measurements at Trinidad Head (41.1∘ N, 124.2∘ W) for the same period (0.994 ± 0.001 ppt yr−1). The trend of the FTIR-retrieved XHFC-23 data at Syowa Station over the 2007–2016 period is 0.819 ± 0.071 ppt yr−1, which is consistent with that derived from the AGAGE in situ measurements at Cape Grim (40.7∘ S, 144.7∘ E) for the same period (0.874 ± 0.002 ppt yr−1). Although there are systematic biases in the FTIR-retrieved XHFC-23 at both sites, these results indicate that ground-based FTIR observations have the capability to monitor the long-term trend of atmospheric HFC-23. If this FTIR measurement technique were extended to other Network for the Detection of Atmospheric Composition Change (NDACC) ground-based FTIR sites around world, the measurements reported from these sites would complement the global AGAGE observations by filling spatial and temporal gaps and may lead to improved insights about changes in regional and global emissions of HFC-23 and its role in global warming.


2008 ◽  
Vol 8 (13) ◽  
pp. 3483-3508 ◽  
Author(s):  
C. Senten ◽  
M. De Mazière ◽  
B. Dils ◽  
C. Hermans ◽  
M. Kruglanski ◽  
...  

Abstract. Ground-based high spectral resolution Fourier-transform infrared (FTIR) solar absorption spectroscopy is a powerful remote sensing technique to obtain information on the total column abundances and on the vertical distribution of various constituents in the atmosphere. This work presents results from two FTIR measurement campaigns in 2002 and 2004, held at Ile de La Réunion (21° S, 55° E). These campaigns represent the first FTIR observations carried out at a southern (sub)tropical site. They serve the initiation of regular, long-term FTIR monitoring at this site in the near future. To demonstrate the capabilities of the FTIR measurements at this location for tropospheric and stratospheric monitoring, a detailed report is given on the retrieval strategy, information content and corresponding full error budget evaluation for ozone (O3), methane (CH4), nitrous oxide (N2O), carbon monoxide (CO), ethane (C2H6), hydrogen chloride (HCl), hydrogen fluoride (HF) and nitric acid (HNO3) total and partial column retrievals. Moreover, we have made a thorough comparison of the capabilities at sea level altitude (St.-Denis) and at 2200 m a.s.l. (Maïdo). It is proved that the performances of the technique are such that the atmospheric variability can be observed, at both locations and in distinct altitude layers. Comparisons with literature and with correlative data from ozone sonde and satellite (i.e., ACE-FTS, HALOE and MOPITT) measurements are given to confirm the results. Despite the short time series available at present, we have been able to detect the seasonal variation of CO in the biomass burning season, as well as the impact of particular biomass burning events in Africa and Madagascar on the atmospheric composition above Ile de La Réunion. We also show that differential measurements between St.-Denis and Maïdo provide useful information about the concentrations in the boundary layer.


2021 ◽  
Vol 14 (2) ◽  
pp. 1239-1252
Author(s):  
Thomas Blumenstock ◽  
Frank Hase ◽  
Axel Keens ◽  
Denis Czurlok ◽  
Orfeo Colebatch ◽  
...  

Abstract. Although optical components in Fourier transform infrared (FTIR) spectrometers are preferably wedged, in practice, infrared spectra typically suffer from the effects of optical resonances (“channeling”) affecting the retrieval of weakly absorbing gases. This study investigates the level of channeling of each FTIR spectrometer within the Network for the Detection of Atmospheric Composition Change (NDACC). Dedicated spectra were recorded by more than 20 NDACC FTIR spectrometers using a laboratory mid-infrared source and two detectors. In the indium antimonide (InSb) detector domain (1900–5000 cm−1), we found that the amplitude of the most pronounced channeling frequency amounts to 0.1 ‰ to 2.0 ‰ of the spectral background level, with a mean of (0.68±0.48) ‰ and a median of 0.60 ‰. In the mercury cadmium telluride (HgCdTe) detector domain (700–1300 cm−1), we find even stronger effects, with the largest amplitude ranging from 0.3 ‰ to 21 ‰ with a mean of (2.45±4.50) ‰ and a median of 1.2 ‰. For both detectors, the leading channeling frequencies are 0.9 and 0.11 or 0.23 cm−1 in most spectrometers. The observed spectral frequencies of 0.11 and 0.23 cm−1 correspond to the optical thickness of the beam splitter substrate. The 0.9 cm−1 channeling is caused by the air gap in between the beam splitter and compensator plate. Since the air gap is a significant source of channeling and the corresponding amplitude differs strongly between spectrometers, we propose new beam splitters with the wedge of the air gap increased to at least 0.8∘. We tested the insertion of spacers in a beam splitter's air gap to demonstrate that increasing the wedge of the air gap decreases the 0.9 cm−1 channeling amplitude significantly. A wedge of the air gap of 0.8∘ reduces the channeling amplitude by about 50 %, while a wedge of about 2∘ removes the 0.9 cm−1 channeling completely. This study shows the potential for reducing channeling in the FTIR spectrometers operated by the NDACC, thereby increasing the quality of recorded spectra across the network.


2021 ◽  
Vol 14 (1) ◽  
pp. 595-613
Author(s):  
Claudia Rivera Cárdenas ◽  
Cesar Guarín ◽  
Wolfgang Stremme ◽  
Martina M. Friedrich ◽  
Alejandro Bezanilla ◽  
...  

Abstract. Formaldehyde (HCHO) total column densities over the Mexico City metropolitan area (MCMA) were retrieved using two independent measurement techniques: multi-axis differential optical absorption spectroscopy (MAX-DOAS) and Fourier transform infrared (FTIR) spectroscopy. For the MAX-DOAS measurements, the software QDOAS was used to calculate differential slant column densities (dSCDs) from the measured spectra and subsequently the Mexican MAX-DOAS fit (MMF) retrieval code to convert from dSCDs to vertical column densities (VCDs). The direct solar-absorption spectra measured with FTIR were analyzed using the PROFFIT (PROFile FIT) retrieval code. Typically the MAX-DOAS instrument reports higher VCDs than those measured with FTIR, in part due to differences found in the ground-level sensitivities as revealed from the retrieval diagnostics from both instruments, as the FTIR and the MAX-DOAS information do not refer exactly to the same altitudes of the atmosphere. Three MAX-DOAS datasets using measurements conducted towards the east, west or both sides of the measurement plane were evaluated with respect to the FTIR results. The retrieved MAX-DOAS HCHO VCDs where 6 %, 8 % and 28 % larger than the FTIR measurements which, supported with satellite data, indicates a large horizontal inhomogeneity in the HCHO abundances. The temporal change in the vertical distribution of this pollutant, guided by the evolution of the mixing-layer height, affects the comparison of the two retrievals with different sensitivities (total column averaging kernels). In addition to the reported seasonal and diurnal variability of HCHO columns within the urban site, background data from measurements at a high-altitude station, located only 60 km away, are presented.


2020 ◽  
Vol 20 (21) ◽  
pp. 12813-12851
Author(s):  
Erik Lutsch ◽  
Kimberly Strong ◽  
Dylan B. A. Jones ◽  
Thomas Blumenstock ◽  
Stephanie Conway ◽  
...  

Abstract. We present a multiyear time series of column abundances of carbon monoxide (CO), hydrogen cyanide (HCN), and ethane (C2H6) measured using Fourier-transform infrared (FTIR) spectrometers at 10 sites affiliated with the Network for the Detection of Atmospheric Composition Change (NDACC). Six are high-latitude sites: Eureka, Ny-Ålesund, Thule, Kiruna, Poker Flat, and St. Petersburg, and four are midlatitude sites: Zugspitze, Jungfraujoch, Toronto, and Rikubetsu. For each site, the interannual trends and seasonal variabilities of the CO time series are accounted for, allowing background column amounts to be determined. Enhancements above the seasonal background were used to identify possible wildfire pollution events. Since the abundance of each trace gas emitted in a wildfire event is specific to the type of vegetation burned and the burning phase, correlations of CO to the long-lived wildfire tracers HCN and C2H6 allow for further confirmation of the detection of wildfire pollution. A GEOS-Chem tagged CO simulation with Global Fire Assimilation System (GFASv1.2) biomass burning emissions was used to determine the source attribution of CO concentrations at each site from 2003 to 2018. For each detected wildfire pollution event, FLEXPART back-trajectory simulations were performed to determine the transport times of the smoke plume. Accounting for the loss of each species during transport, the enhancement ratios of HCN and C2H6 with respect to CO were converted to emission ratios. We report mean emission ratios with respect to CO for HCN and C2H6 of 0.0047 and 0.0092, respectively, with a standard deviation of 0.0014 and 0.0046, respectively, determined from 23 boreal North American wildfire events. Similarly, we report mean emission ratios for HCN and C2H6 of 0.0049 and 0.0100, respectively, with a standard deviation of 0.0025 and 0.0042, respectively, determined from 39 boreal Asian wildfire events. The agreement of our emission ratios with literature values illustrates the capability of ground-based FTIR measurements to quantify biomass burning emissions. We provide a comprehensive dataset that quantifies HCN and C2H6 emission ratios from 62 wildfire pollution events. Our dataset provides novel emission ratio estimates, which are sparsely available in the published literature, particularly for boreal Asian sources.


2021 ◽  
Vol 21 (8) ◽  
pp. 6365-6387
Author(s):  
Youwen Sun ◽  
Hao Yin ◽  
Cheng Liu ◽  
Lin Zhang ◽  
Yuan Cheng ◽  
...  

Abstract. The major air pollutant emissions have decreased, and the overall air quality has substantially improved across China in recent years as a consequence of active clean air policies for mitigating severe air pollution problems. As key precursors of formaldehyde (HCHO) and ozone (O3), the volatile organic compounds (VOCs) in China are still increasing due to the lack of mitigation measures for VOCs. In this study, we investigated the drivers of HCHO variability from 2015 to 2019 over Hefei, eastern China, by using ground-based high-resolution Fourier transform infrared (FTIR) spectroscopy and GEOS-Chem model simulation. Seasonal and interannual variabilities of HCHO over Hefei were analyzed and hydroxyl (OH) radical production rates from HCHO photolysis were evaluated. The relative contributions of emitted and photochemical sources to the observed HCHO were analyzed by using ground-level carbon monoxide (CO) and Ox (O3 + nitrogen oxide (NO2)) as tracers for emitted and photochemical HCHO, respectively. Contributions of emission sources from various categories and geographical regions to the observed HCHO summertime enhancements were determined by using a series of GEOS-Chem sensitivity simulations. The column-averaged dry air mole fractions of HCHO (XHCHO) reached a maximum monthly mean value of 1.1 ± 0.27 ppbv in July and a minimum monthly mean value of 0.4 ± 0.11 ppbv in January. The XHCHO time series from 2015 to 2019 over Hefei showed a positive change rate of 2.38 ± 0.71 % per year. The photochemical HCHO is the dominant source of atmospheric HCHO over Hefei for most of the year (68.1 %). In the studied years, the HCHO photolysis was an important source of OH radicals over Hefei during all sunlight hours of both summer and winter days. The oxidations of both methane (CH4) and nonmethane VOCs (NMVOCs) dominate the HCHO production over Hefei and constitute the main driver of its summertime enhancements. The NMVOC-related HCHO summertime enhancements were dominated by the emissions within eastern China. The observed increasing change rate of HCHO from 2015 to 2019 over Hefei was attributed to the increase in photochemical HCHO resulting from increasing change rates of both CH4 and NMVOC oxidations, which overwhelmed the decrease in emitted HCHO. This study provides a valuable evaluation of recent VOC emissions and regional photochemical capacity in China. In addition, understanding the sources of HCHO is a necessary step for tackling air pollution in eastern China and mitigating the emissions of pollutants.


Sign in / Sign up

Export Citation Format

Share Document