scholarly journals Assessment of natural and anthropogenic aerosol air pollution in the Middle East using MERRA-2, CAMS data assimilation products, and high-resolution WRF-Chem model simulations

2020 ◽  
Vol 20 (15) ◽  
pp. 9281-9310 ◽  
Author(s):  
Alexander Ukhov ◽  
Suleiman Mostamandi ◽  
Arlindo da Silva ◽  
Johannes Flemming ◽  
Yasser Alshehri ◽  
...  

Abstract. Modern-Era Retrospective analysis for Research and Applications v.2 (MERRA-2), Copernicus Atmosphere Monitoring Service Operational Analysis (CAMS-OA), and a high-resolution regional Weather Research and Forecasting model coupled with chemistry (WRF-Chem) were used to evaluate natural and anthropogenic particulate matter (PM) air pollution in the Middle East (ME) during 2015–2016. Two Moderate Resolution Imaging Spectrometer (MODIS) retrievals – combined product Deep Blue and Deep Target (MODIS-DB&amp;DT) and Multi-Angle Implementation of Atmospheric Correction (MAIAC) – and Aerosol Robotic Network (AERONET) aerosol optical depth (AOD) observations as well as in situ PM measurements for 2016 were used for validation of the WRF-Chem output and both assimilation products. MERRA-2 and CAMS-OA assimilate AOD observations. WRF-Chem is a free-running model, but dust emission in WRF-Chem is tuned to fit AOD and aerosol volume size distributions obtained from AERONET. MERRA-2 was used to construct WRF-Chem initial and boundary conditions both for meteorology and chemical and aerosol species. SO2 emissions in WRF-Chem are based on the novel OMI-HTAP SO2 emission dataset. The correlation with the AERONET AOD is highest for MERRA-2 (0.72–0.91), MAIAC (0.63–0.96), and CAMS-OA (0.65–0.87), followed by MODIS-DB&amp;DT (0.56–0.84) and WRF-Chem (0.43–0.85). However, CAMS-OA has a relatively high positive mean bias with respect to AERONET AOD. The spatial distributions of seasonally averaged AODs from WRF-Chem, assimilation products, and MAIAC are well correlated with MODIS-DB&amp;DT AOD product. MAIAC has the highest correlation (R=0.8), followed by MERRA-2 (R=0.66), CAMS-OA (R=0.65), and WRF-Chem (R=0.61). WRF-Chem, MERRA-2, and MAIAC underestimate and CAMS-OA overestimates MODIS-DB&amp;DT AOD. The simulated and observed PM concentrations might differ by a factor of 2 because it is more challenging for the model and the assimilation products to reproduce PM concentration measured within the city. Although aerosol fields in WRF-Chem and assimilation products are entirely consistent, WRF-Chem is preferable for analysis of regional air quality over the ME due to its higher spatial resolution and better SO2 emissions. The WRF-Chem’s PM background concentrations exceed the World Health Organization (WHO) guidelines over the entire ME. Mineral dust is the major contributor to PM (≈75 %–95 %) compared to other aerosol types. Near and downwind from the SO2 emission sources, nondust aerosols (primarily sulfate) contribute up to 30 % to PM2.5. The contribution of sea salt to PM in coastal regions can reach 5 %. The contributions of organic matter, black carbon and organic carbon to PM over the Middle East are insignificant. In the major cities over the Arabian Peninsula, the 90th percentile of PM10 and PM2.5 (particles with diameters less than 10 and 2.5 µm, respectively) daily mean surface concentrations exceed the corresponding Kingdom of Saudi Arabia air quality limits. The contribution of the nondust component to PM2.5 is <25 %, which limits the emission control effect on air quality. The mitigation of the dust effect on air quality requires the development of environment-based approaches like growing tree belts around the cities and enhancing in-city vegetation cover. The WRF-Chem configuration presented in this study could be a prototype of a future air quality forecast system that warns the population against air pollution hazards.

Eos ◽  
2015 ◽  
Vol 96 ◽  
Author(s):  
JoAnna Wendel

Invasions, armed conflict, sanctions, and economic distress correlate with cleaner air in high-resolution satellite data that reveal air quality at the individual city level.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 85
Author(s):  
Laura Gladson ◽  
Nicolas Garcia ◽  
Jianzhao Bi ◽  
Yang Liu ◽  
Hyung Joo Lee ◽  
...  

Air quality management is increasingly focused not only on across-the-board reductions in ambient pollution concentrations but also on identifying and remediating elevated exposures that often occur in traditionally disadvantaged communities. Remote sensing of ambient air pollution using data derived from satellites has the potential to better inform management decisions that address environmental disparities by providing increased spatial coverage, at high-spatial resolutions, compared to air pollution exposure estimates based on ground-based monitors alone. Daily PM2.5 estimates for 2015–2018 were estimated at a 1 km2 resolution, derived from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument and the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm in order to assess the utility of highly refined spatiotemporal air pollution data in 92 California cities and in the 13 communities included in the California Community Air Protection Program. The identification of pollution hot-spots within a city is typically not possible relying solely on the regulatory monitoring networks; however, day-to-day temporal variability was shown to be generally well represented by nearby ground-based monitoring data even in communities with strong spatial gradients in pollutant concentrations. An assessment of within-ZIP Code variability in pollution estimates indicates that high-resolution pollution estimates (i.e., 1 km2) are not always needed to identify spatial differences in exposure but become increasingly important for larger geographic areas (approximately 50 km2). Taken together, these findings can help inform strategies for use of remote sensing data for air quality management including the screening of locations with air pollution exposures that are not well represented by existing ground-based air pollution monitors.


2020 ◽  
Author(s):  
Alexander Ukhov ◽  
Suleiman Mostamandi ◽  
Arlindo da Silva ◽  
Johannes Flemming ◽  
Yasser Alshehri ◽  
...  

Abstract. Modern-Era Retrospective analysis for Research and Applications v.2 (MERRA-2), Copernicus Atmosphere Monitoring Service Operational Analysis (CAMS-OA) data assimilation products, and a regional Weather Research and Forecasting model (10 km resolution) coupled with Chemistry (WRF-Chem) were used to evaluate natural and anthropogenic aerosol air pollution in the ME during 2015–2016. Satellite and ground-based AOD observations, as well as in-situ Particulate Matter (PM) measurements for 2016, were used for validation. WRF-Chem code was modified to correct the calculation of dust gravitational settling and aerosol optical properties. The dust emission in WRF-Chem is calibrated to fit Aerosol Optical Depth (AOD) and aerosol volume size distributions obtained from Aerosol Robotic Network (AERONET) observations. MERRA-2 was used to construct WRF-Chem initial and boundary conditions both for meteorology and chemical/aerosol species. SO2 emissions in WRF-Chem are based on the novel NASA SO2 emission dataset that reveals unaccounted sources over the ME. Although aerosol fields in WRF-Chem and assimilation products are quite consistent, WRF-Chem, due to its higher spatial resolution and better SO2 emissions, is preferable for analysis of regional air-quality over the ME. The WRF-Chem's PM background concentrations exceed the World Health Organization (WHO) guidelines over the entire ME. The major contributor to PM (~ 75–95 %) is mineral dust. In the ME urban centers and near oil recovery fields, non-dust aerosols (primarily sulfate) contribute up to 26 % into PM2.5. The contribution of sea salt into PM can rich up to 5 %. The contribution of organic matter into PM prevails over black carbon.


2020 ◽  
Author(s):  
Alexander Ukhov ◽  
Suleiman Mostamandi ◽  
Johannes Flemming ◽  
Arlindo DaSilva ◽  
Nick Krotkov ◽  
...  

&lt;p&gt;The Middle East is notorious for high air pollution that affects both air-quality and regional climate. The Middle East generates about 30% of world dust annually and emits about 10% of anthropogenic SO&lt;sub&gt;2&lt;/sub&gt;. In this study we use Modern-Era Retrospective analysis for Research and Applications v.2 (MERRA-2), Copernicus Atmosphere Monitoring Service Operational Analysis (CAMS-OA) data assimilation products, and a regional Weather Research and Forecasting model (10 km resolution) coupled with Chemistry (WRF-Chem) to evaluate natural and anthropogenic air pollution in the ME. The SO&lt;sub&gt;2&lt;/sub&gt; anthropogenic emissions used in WRF-Chem are updated using the independent satellite SO&lt;sub&gt;2&lt;/sub&gt; emission dataset obtained from the Ozone Monitoring Instrument (OMI) observations onboard NASA EOS Aura satellite. Satellite and ground-based aerosol optical depth (AOD) observations, as well as Particulate Matter (PM) and SO&lt;sub&gt;2&lt;/sub&gt; in situ measurements for 2015-2016, were used for validation and model evaluation.&amp;#160;&lt;/p&gt;&lt;p&gt;Although aerosol fields in regional WRF-Chem and global assimilation products are quite consistent, WRF-Chem, due to its higher spatial resolution and novel OMI SO&lt;sub&gt;2&lt;/sub&gt; emissions, is preferable for analysis of regional air-quality over the ME. We found that conventional emission inventories (EDGAR-4.2, MACCity, and HTAP-2.2) have uncertainties in the location and magnitude of SO&lt;sub&gt;2&lt;/sub&gt; sources in the ME and significantly underestimate SO&lt;sub&gt;2&lt;/sub&gt; emissions in the Arabian Gulf. CAMS reanalysis tends to overestimate PM&lt;sub&gt;2.5&lt;/sub&gt; and underestimate PM&lt;sub&gt;10&lt;/sub&gt; concentrations. In the coastal areas, MERRA2 underestimates sulfate and tends to overestimate sea salt concentrations. The WRF-Chem&amp;#8217;s PM background concentrations exceed the World Health Organization (WHO) guidelines over the entire ME. The major contributor to PM (~75&amp;#8211;95%) is mineral dust. In the ME urban centers and near oil recovery fields, non-dust aerosols (primarily sulfate) contribute up to 26% into PM&lt;sub&gt;2.5&lt;/sub&gt;. The contribution of sea salt into PM can rich up to 5%. The contribution of organic matter into PM prevails over black carbon. SO&lt;sub&gt;2&lt;/sub&gt; surface concentrations in major ME cities frequently exceed European air-quality limits.&lt;/p&gt;


2020 ◽  
Vol 9 (8) ◽  
pp. 2351
Author(s):  
Łukasz Kuźma ◽  
Krzysztof Struniawski ◽  
Szymon Pogorzelski ◽  
Hanna Bachórzewska-Gajewska ◽  
Sławomir Dobrzycki

(1) Introduction: air pollution is considered to be one of the main risk factors for public health. According to the European Environment Agency (EEA), air pollution contributes to the premature deaths of approximately 500,000 citizens of the European Union (EU), including almost 5000 inhabitants of Poland every year. (2) Purpose: to assess the gender differences in the impact of air pollution on the mortality in the population of the city of Bialystok—the capital of the Green Lungs of Poland. (3) Materials and Methods: based on the data from the Central Statistical Office, the number—and causes of death—of Białystok residents in the period 2008–2017 were analyzed. The study utilized the data recorded by the Provincial Inspectorate for Environmental Protection station and the Institute of Meteorology and Water Management during the analysis period. Time series regression with Poisson distribution was used in statistical analysis. (4) Results: A total of 34,005 deaths had been recorded, in which women accounted for 47.5%. The proportion of cardiovascular-related deaths was 48% (n = 16,370). An increase of SO2 concentration by 1-µg/m3 (relative risk (RR) 1.07, 95% confidence interval (CI) 1.02–1.12; p = 0.005) and a 10 °C decrease of temperature (RR 1.03, 95% CI 1.01–1.05; p = 0.005) were related to an increase in the number of daily deaths. No gender differences in the impact of air pollution on mortality were observed. In the analysis of the subgroup of cardiovascular deaths, the main pollutant that was found to have an effect on daily mortality was particulate matter with a diameter of 2.5 μm or less (PM2.5); the RR for 10-µg/m3 increase of PM2.5 was 1.07 (95% CI 1.02–1.12; p = 0.01), and this effect was noted only in the male population. (5) Conclusions: air quality and atmospheric conditions had an impact on the mortality of Bialystok residents. The main air pollutant that influenced the mortality rate was SO2, and there were no gender differences in the impact of this pollutant. In the male population, an increased exposure to PM2.5 concentration was associated with significantly higher cardiovascular mortality. These findings suggest that improving air quality, in particular, even with lower SO2 levels than currently allowed by the World Health Organization (WHO) guidelines, may benefit public health. Further studies on this topic are needed, but our results bring questions whether the recommendations concerning acceptable concentrations of air pollutants should be stricter, or is there a safe concentration of SO2 in the air at all.


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 750
Author(s):  
Hoang Ngoc Khue Vu ◽  
Quang Phuc Ha ◽  
Duc Hiep Nguyen ◽  
Thi Thu Thuy Nguyen ◽  
Thoai Tam Nguyen ◽  
...  

Along with its rapid urban development, Ho Chi Minh City (HCMC) in recent years has suffered a high concentration of air pollutants, especially fine particulate matters or PM2.5. A comprehensive study is required to evaluate the air quality conditions and their health impact in this city. Given the lack of adequate air quality monitoring data over a large area of the size of HCMC, an air quality modeling methodology is adopted to address the requirement. Here, by utilizing a corresponding emission inventory in combination with The Air Pollution Model-Chemical Transport Model (TAPM-CTM), the predicted concentration of air pollutants is first obtained for PM2.5, NOx, and SO2. Then by associating the pollutants exposed with the mortality rate from three causes, namely Ischemic Heart Disease (IHD), cardiopulmonary, and lung cancer, the impact of air pollution on human health is obtained for this purpose. Spatial distribution has shown a high amount of pollutants concentrated in the central city with a high density of combustion vehicles (motorcycles and automobiles). In addition, a significant amount of emissions can be observed from stevedoring and harbor activities, including ferries and cargo handling equipment located along the river. Other sources such as household activities also contribute to an even distribution of emission across the city. The results of air quality modeling showed that the annual average concentrations of NO2 were higher than the standard of Vietnam National Technical Regulation on Ambient Air Quality (QCVN 05: 2013 40 µg/m3) and World Health Organization (WHO) (40 µg/m3). The annual average concentrations of PM2.5 were 23 µg/m3 and were also much higher than the WHO (10 µg/m3) standard by about 2.3 times. In terms of public health impacts, PM2.5 was found to be responsible for about 1136 deaths, while the number of mortalities from exposure to NO2 and SO2 was 172 and 89 deaths, respectively. These figures demand some stringent measures from the authorities to potentially remedy the alarming situation of air pollution in HCM City.


Author(s):  
Ioannis Bakolis ◽  
Ryan Hammoud ◽  
Robert Stewart ◽  
Sean Beevers ◽  
David Dajnak ◽  
...  

Abstract Purpose The World Health Organisation (WHO) recently ranked air pollution as the major environmental cause of premature death. However, the significant potential health and societal costs of poor mental health in relation to air quality are not represented in the WHO report due to limited evidence. We aimed to test the hypothesis that long-term exposure to air pollution is associated with poor mental health. Methods A prospective longitudinal population-based mental health survey was conducted of 1698 adults living in 1075 households in South East London, from 2008 to 2013. High-resolution quarterly average air pollution concentrations of nitrogen dioxide (NO2) and oxides (NOx), ozone (O3), particulate matter with an aerodynamic diameter < 10 μm (PM10) and < 2.5 μm (PM2.5) were linked to the home addresses of the study participants. Associations with mental health were analysed with the use of multilevel generalised linear models, after adjusting for large number of confounders, including the individuals’ socioeconomic position and exposure to road-traffic noise. Results We found robust evidence for interquartile range increases in PM2.5, NOx and NO2 to be associated with 18–39% increased odds of common mental disorders, 19–30% increased odds of poor physical symptoms and 33% of psychotic experiences only for PM10. These longitudinal associations were more pronounced in the subset of non-movers for NO2 and NOx. Conclusions The findings suggest that traffic-related air pollution is adversely affecting mental health. Whilst causation cannot be proved, this work suggests substantial morbidity from mental disorders could be avoided with improved air quality.


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1107
Author(s):  
Vlatka Matkovic ◽  
Maida Mulić ◽  
Selma Azabagić ◽  
Marija Jevtić

Ambient air pollution is one of eight global risk factors for deaths and accounts for 38.44 all causes death rates attributable to ambient PM pollution, while in Bosnia and Herzegovina, it is 58.37. We have estimated health endpoints and possible gains if two policy scenarios were implemented and air pollution reduction achieved. Real-world health and recorded PM pollution data for 2018 were used for assessing the health impacts and possible gains. Calculations were performed with WHO AirQ+ software against two scenarios with cut-off levels at country-legal values and WHO air quality recommendations. Ambient PM2.5 pollution is responsible for 16.20% and 22.77% of all-cause mortality among adults in Tuzla and Lukavac, respectively. Our data show that life expectancy could increase by 2.1 and 2.4 years for those cities. In the pollution hotspots, in reality, there is a wide gap in what is observed and the implementation of the legally binding air quality limit values and, thus, adverse health effects. Considerable health gains and life expectancy are possible if legal or health scenarios in polluted cities were achieved. This estimate might be useful in providing additional health burden evidence as a key component for a clean air policy and action plans.


Sign in / Sign up

Export Citation Format

Share Document