scholarly journals Supplementary material to "Contribution of Surface Solar Radiation and Precipitation to Spatiotemporal Patterns of Surface and Air Temperature Warming in China from 1960 to 2003"

Author(s):  
Jizheng Du ◽  
Kaicun Wang ◽  
Jiankai Wang ◽  
Qian Ma
2020 ◽  
Author(s):  
Runze Zhao ◽  
Kaicun Wang ◽  
Guocan Wu ◽  
Chunlue Zhou

<p>The change of its annual cycle is extremely important due to global warming. A widely used method to analyze the changes of temperature annual cycle is based on the decomposition to phase, amplitude and baseline terms. Solar radiation as the leading energy source of temperature changes can directly influence temperature annual cycle. In this study, we investigate the phase, amplitude and baseline of temperature and solar radiation annual cycle after Fourier transform during 1960-2016 in China. The results show that annual cycle of maximum, minimum and mean surface air temperature are advancing in time (-0.08, -0.27 and -0.33 days per ten years), decreasing in range (-0.07, -0.25 and -0.18 degrees per ten years) and rising in baseline (0.20, 0.34 and 0.25 degrees per ten years). To further quantify the effect of surface solar radiation to temperature, we remove the effect from its original time series of maximum and mean temperature, based on a linear regression. The compare of raw and adjusted temperature shows that surface solar radiation advancing the time by 0.19 and 0.19 days per ten years, reduces the range by 0.14 and 0.13 degrees per ten years, and reduces the baseline by 0.08 and 0.04 degrees per ten years, for surface maximum and mean daily air temperature. The result can explain parts of seasonal temperature variation. Effect of surface solar radiation is most obvious Yunnan-Guizhou Plateau for maximum phase. The low phase value in this area is corrected and well-match with other same latitude area after adjusted.</p>


2014 ◽  
Vol 35 (12) ◽  
pp. 3385-3396 ◽  
Author(s):  
Jianming Deng ◽  
Yunlin Zhang ◽  
Boqiang Qin ◽  
Kun Shi

2016 ◽  
Author(s):  
Jizheng Du ◽  
Kaicun Wang ◽  
Jiankai Wang ◽  
Qian Ma

Abstract. Although the global warming has been successfully attributed to the elevated atmospheric greenhouses gases, the reasons for spatiotemporal patterns the warming rates are still under debate. In this paper, we report surface and air warming based on observations collected at 1977 stations in China from 1960 to 2003. Our results show that the warming of daily maximum surface (Ts-max) and air (Ta-max) temperatures showed a significant spatial pattern, stronger in the northwest China and weaker in South China and the North China Plain. These warming spatial patterns are attributed to surface shortwave solar radiation (SSR) and precipitation, the key parameters of surface energy budget. During the study period, SSR decreased by −1.50 W m−2 10 yr−1 in China and caused the trends of Ts-max and Ta-max decreased by 0.139 and 0.053 °C 10 yr−1, respectively. More importantly, South China and the North China Plain had an extremely higher dimming rates than other regions. The spatial contrasts of trends of Ts-max and Ta-max in China are significantly reduced after adjusting for the impact of SSR and precipitation. For example, the difference in warming rates between North China Plain and Loess Plateau reduce by 97.8 % and 68.3 % for Ts-max and Ta-max respectively. After adjusting for the impact of SSR and precipitation, the seasonal contrast of Ts-max and Ta-max decreased by 45.0 % and 17.2 %, and the daily contrast of warming rates of surface and air temperature decreased by 33.0 % and 29.1 % over China. This study shows an essential role of land energy budget in determining regional warming.


2020 ◽  
Author(s):  
Sonia Jerez ◽  
Laura Palacios-Peña ◽  
Claudia Gutiérrez ◽  
Pedro Jiménez-Guerrero ◽  
Jose María López-Romero ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Andrea de Almeida Brito ◽  
Heráclio Alves de Araújo ◽  
Gilney Figueira Zebende

AbstractDue to the importance of generating energy sustainably, with the Sun being a large solar power plant for the Earth, we study the cross-correlations between the main meteorological variables (global solar radiation, air temperature, and relative air humidity) from a global cross-correlation perspective to efficiently capture solar energy. This is done initially between pairs of these variables, with the Detrended Cross-Correlation Coefficient, ρDCCA, and subsequently with the recently developed Multiple Detrended Cross-Correlation Coefficient, $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2. We use the hourly data from three meteorological stations of the Brazilian Institute of Meteorology located in the state of Bahia (Brazil). Initially, with the original data, we set up a color map for each variable to show the time dynamics. After, ρDCCA was calculated, thus obtaining a positive value between the global solar radiation and air temperature, and a negative value between the global solar radiation and air relative humidity, for all time scales. Finally, for the first time, was applied $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2 to analyze cross-correlations between three meteorological variables at the same time. On taking the global radiation as the dependent variable, and assuming that $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}={\bf{1}}$$DMCx2=1 (which varies from 0 to 1) is the ideal value for the capture of solar energy, our analysis finds some patterns (differences) involving these meteorological stations with a high intensity of annual solar radiation.


Sign in / Sign up

Export Citation Format

Share Document