scholarly journals Intraseasonal to interannual variability of Kelvin wave momentum fluxes as derived from high-resolution radiosonde data

2017 ◽  
Author(s):  
Jeremiah P. Sjoberg ◽  
Thomas Birner ◽  
Richard H. Johnson

Abstract. Observational estimates of Kelvin wave momentum fluxes in the tropical lower stratosphere remains challenging. Here we extend a method based on linear wave theory to estimate time series of these momentum fluxes from high-resolution radiosonde data. Testing the sensitivity to vertical resolution, our estimated momentum fluxes are found to be most sensitive to vertical resolution greater than 1 km, largely due to overestimation of the vertical wavelength. Estimates of momentum fluxes derived from reanalyses and coarse-resolution satellite data are notably larger. Daily time series are produced for sounding sites operated by the U.S. Department of Energy (DOE) and from the recent Dynamics of the Madden-Julian Oscillation (DYNAMO) field campaign. Our momentum flux estimates are found to be robust to different data sources and processing, and in quantitative agreement with estimates from prior studies. Climatological analysis is performed over the selected 11 year span of data from the ARM sites. Analyses for the available 11-year span of data reveal the expected seasonal cycle of momentum flux maxima in boreal winter and minima in boreal summer and variability associated with the quasi-biennial oscillation (QBO) of maxima during easterly phase and minima during westerly phase. Analysis of Madden-Julian Oscillation (MJO) active periods suggests that the MJO provides a nontrivial increase in lowermost stratospheric momentum fluxes, though statistical significance is not found due to the small number of events observed in the available time series.

2017 ◽  
Vol 17 (14) ◽  
pp. 8971-8986
Author(s):  
Jeremiah P. Sjoberg ◽  
Thomas Birner ◽  
Richard H. Johnson

Abstract. Observational estimates of Kelvin wave momentum fluxes in the tropical lower stratosphere remain challenging. Here we extend a method based on linear wave theory to estimate daily time series of these momentum fluxes from high-resolution radiosonde data. Daily time series are produced for sounding sites operated by the US Department of Energy (DOE) and from the recent Dynamics of the Madden–Julian Oscillation (DYNAMO) field campaign. Our momentum flux estimates are found to be robust to different data sources and processing and in quantitative agreement with estimates from prior studies. Testing the sensitivity to vertical resolution, our estimated momentum fluxes are found to be most sensitive to vertical resolution greater than 1 km, largely due to overestimation of the vertical wavelength. Climatological analysis is performed over a selected 11-year span of data from DOE Atmospheric Radiation Measurement (ARM) radiosonde sites. Analyses of this 11-year span of data reveal the expected seasonal cycle of momentum flux maxima in boreal winter and minima in boreal summer, and variability associated with the quasi-biennial oscillation of maxima during easterly phase and minima during westerly phase. Comparison between periods with active convection that is either strongly or weakly associated with the Madden–Julian Oscillation (MJO) suggests that the MJO provides a nontrivial increase in the lowermost stratospheric momentum fluxes.


2013 ◽  
Vol 26 (17) ◽  
pp. 6383-6405 ◽  
Author(s):  
Marvin A. Geller ◽  
M. Joan Alexander ◽  
Peter T. Love ◽  
Julio Bacmeister ◽  
Manfred Ern ◽  
...  

Abstract For the first time, a formal comparison is made between gravity wave momentum fluxes in models and those derived from observations. Although gravity waves occur over a wide range of spatial and temporal scales, the focus of this paper is on scales that are being parameterized in present climate models, sub-1000-km scales. Only observational methods that permit derivation of gravity wave momentum fluxes over large geographical areas are discussed, and these are from satellite temperature measurements, constant-density long-duration balloons, and high-vertical-resolution radiosonde data. The models discussed include two high-resolution models in which gravity waves are explicitly modeled, Kanto and the Community Atmosphere Model, version 5 (CAM5), and three climate models containing gravity wave parameterizations, MAECHAM5, Hadley Centre Global Environmental Model 3 (HadGEM3), and the Goddard Institute for Space Studies (GISS) model. Measurements generally show similar flux magnitudes as in models, except that the fluxes derived from satellite measurements fall off more rapidly with height. This is likely due to limitations on the observable range of wavelengths, although other factors may contribute. When one accounts for this more rapid fall off, the geographical distribution of the fluxes from observations and models compare reasonably well, except for certain features that depend on the specification of the nonorographic gravity wave source functions in the climate models. For instance, both the observed fluxes and those in the high-resolution models are very small at summer high latitudes, but this is not the case for some of the climate models. This comparison between gravity wave fluxes from climate models, high-resolution models, and fluxes derived from observations indicates that such efforts offer a promising path toward improving specifications of gravity wave sources in climate models.


2014 ◽  
Vol 7 (6) ◽  
pp. 7559-7573
Author(s):  
S. Watanabe ◽  
K. Sato ◽  
Y. Kawatani ◽  
M. Takahashi

Abstract. The dependence of the gravity wave spectra of energy and momentum flux on the horizontal resolution and time step of atmospheric general circulation models (AGCMs) has been thoroughly investigated in the past. In contrast, much less attention has been given to the dependence of these gravity wave parameters on models' vertical resolutions. The present study demonstrates the dependence of gravity wave momentum flux in the stratosphere and mesosphere on the model's vertical resolution, which is evaluated using an AGCM with a horizontal resolution of about 0.56°. We performed a series of sensitivity test simulations changing only the model's vertical resolution above a height of 8 km, and found that inertial gravity waves with short vertical wavelengths simulated at higher vertical resolutions likely play an important role in determining the gravity wave momentum flux in the stratosphere and mesosphere.


2007 ◽  
Vol 64 (12) ◽  
pp. 4400-4416 ◽  
Author(s):  
Hirohiko Masunaga

Abstract The Madden–Julian oscillation (MJO), Kelvin wave, and equatorial Rossby (ER) wave—collectively called intraseasonal oscillations (ISOs)—are investigated using a 25-yr record of outgoing longwave radiation (OLR) measurements as well as the associated dynamical fields. The ISO modes are detected by applying bandpass filters to the OLR data in the frequency–wavenumber space. An automated wave-tracking algorithm is applied to each ISO mode so that convection centers accompanied with the ISOs are traced in space and time in an objective fashion. The identified paths of the individual ISO modes are first examined and found strongly modulated regionally and seasonally. The dynamical structure is composited with respect to the convection centers of each ISO mode. A baroclinic mode of the combined Rossby and Kelvin structure is prominent for the MJO, consistent with existing work. The Kelvin wave exhibits a low-level wind field resembling the shallow-water solution, while a slight lead of low-level convergence over convection suggests the impact of frictional boundary layer convergence on Kelvin wave dynamics. A lagged composite analysis reveals that the MJO is accompanied with a Kelvin wave approaching from the west preceding the MJO convective maximum in austral summer. MJO activity then peaks as the Kelvin and ER waves constructively interfere to enhance off-equatorial boundary layer convergence. The MJO leaves a Kelvin wave emanating to the east once the peak phase is passed. The approaching Kelvin wave prior to the development of MJO convection is absent in boreal summer and fall. The composite ER wave, loosely concentrated around the MJO, is nearly stationary throughout. A possible scenario to physically translate the observed result is also discussed.


2015 ◽  
Vol 8 (6) ◽  
pp. 1637-1644 ◽  
Author(s):  
S. Watanabe ◽  
K. Sato ◽  
Y. Kawatani ◽  
M. Takahashi

Abstract. The dependence of the gravity wave spectra of energy and momentum flux on the horizontal resolution and time step of atmospheric general circulation models (AGCMs) has been thoroughly investigated in the past. In contrast, much less attention has been given to the dependence of these gravity wave parameters on models' vertical resolutions. The present study demonstrates the dependence of gravity wave momentum flux (GWMF) in the stratosphere and mesosphere on the model's vertical resolution, which is evaluated using an AGCM with a horizontal resolution of about 0.56°. We performed a series of sensitivity test simulations changing only the model's vertical resolution above a height of 8 km, and found a global reduction of GWMF with increasing vertical resolution. Inertial gravity waves with short vertical wavelengths simulated at higher vertical resolutions might play an important role in determining GWMF in the summertime stratosphere. The sensitivity test simulation also demonstrated the importance of the model's vertical resolution on representing realistic behaviors of gravity waves near their critical level.


2018 ◽  
Author(s):  
Viktoria F. Sofieva ◽  
Francis Dalaudier ◽  
Alain Hauchecorne ◽  
Valery Kan

Abstract. In this paper, we describe the inversion algorithm for retrievals of high vertical resolution temperature profiles using bi-chromatic stellar scintillation measurements in the occultation geometry. This retrieval algorithm has been improved with respect to nominal ESA processing and applied to the measurements by Global Ozone Monitoring by Occultation of Stars (GOMOS) operated on board Envisat in 2002–2012. The retrieval method exploits the chromatic refraction in the Earth's atmosphere. The bi-chromatic scintillations allow the determination of the refractive angle, which is proportional to the time delay between the photometer signals. The paper discusses the basic principle and detailed inversion algorithm for reconstruction of high resolution density, pressure and temperature profiles (HRTP) in the stratosphere from scintillation measurements. The HRTP profiles are retrieved with very good vertical resolution of ~200 m and high accuracy of ~1–3 K for altitudes of 15–32 km and with a global coverage. The best accuracy is achieved in in-orbital-plane occultations, and the accuracy weakly depends on star brightness. The whole GOMOS dataset has been processed with the improved HRTP inversion algorithm using the FMI's Scientific Processor; and the dataset (HRTP FSP v1) is in open access. The validation of small-scale fluctuations in the retrieved HRTP profiles is performed via comparison of vertical wavenumber spectra of temperature fluctuations in HRTP and in collocated radiosonde data. We found that the spectral features of temperature fluctuations are very similar in HRTP and collocated radiosonde temperature profiles. HRTP can be assimilated into atmospheric models, used in studies of stratospheric clouds and in analysis of internal gravity waves activity. As an example of geophysical applications, gravity wave potential energy has been estimated using the HRTP dataset. The obtained spatio-temporal distributions of gravity wave energy are in good agreement with the previous analyses using other measurements.


2008 ◽  
Vol 65 (10) ◽  
pp. 3056-3070 ◽  
Author(s):  
Albert Hertzog ◽  
Gillian Boccara ◽  
Robert A. Vincent ◽  
François Vial ◽  
Philippe Cocquerez

The stratospheric gravity wave field in the Southern Hemisphere is investigated by analyzing observations collected by 27 long-duration balloons that flew between September 2005 and February 2006 over Antarctica and the Southern Ocean. The analysis is based on the methods introduced by Boccara et al. in a companion paper. Special attention is given to deriving information useful to gravity wave drag parameterizations employed in atmospheric general circulation models. The balloon dataset is used to map the geographic variability of gravity wave momentum fluxes in the lower stratosphere. This flux distribution is found to be very heterogeneous with the largest time-averaged value (28 mPa) observed above the Antarctic Peninsula. This value exceeds by a factor of ∼10 the overall mean momentum flux measured during the balloon campaign. Zonal momentum fluxes were predominantly westward, whereas meridional momentum fluxes were equally northward and southward. A local enhancement of southward flux is nevertheless observed above Adélie Land and is attributed to waves generated by katabatic winds, for which the signature is otherwise rather small in the balloon observations. When zonal averages are performed, oceanic momentum fluxes are found to be of similar magnitude to continental values (2.5–3 mPa), stressing the importance of nonorographic gravity waves over oceans. Last, gravity wave intermittency is investigated. Mountain waves appear to be significantly more sporadic than waves observed above the ocean.


2019 ◽  
Vol 76 (3) ◽  
pp. 749-756 ◽  
Author(s):  
Dale R. Durran ◽  
Maximo Q. Menchaca

Abstract The influence of vertical shear on the evolution of mountain-wave momentum fluxes in time-varying cross-mountain flows is investigated by numerical simulation and analyzed using ray tracing and the WKB approximation. The previously documented tendency of momentum fluxes to be strongest during periods of large-scale cross-mountain flow acceleration can be eliminated when the cross-mountain wind increases strongly with height. In particular, the wave packet accumulation mechanism responsible for the enhancement of the momentum flux during periods of cross-mountain flow acceleration is eliminated by the tendency of the vertical group velocity to increase with height in a mean flow with strong forward shear, thereby promoting vertical separation rather than concentration of vertically propagating wave packets.


2007 ◽  
Vol 64 (5) ◽  
pp. 1636-1651 ◽  
Author(s):  
Joseph A. Biello ◽  
Andrew J. Majda ◽  
Mitchell W. Moncrieff

Abstract The derivation of the meridional momentum flux arising from a multiscale horizontal velocity field in the intraseasonal, planetary, equatorial synoptic-scale dynamics (IPESD) multiscale models of the equatorial troposphere is presented. It is shown that, because of the balance dynamics on the synoptic scales, the synoptic-scale component of the meridional momentum flux convergence must always vanish at the equator. Plausible Madden–Julian oscillation (MJO) models are presented along with their planetary-scale meridional momentum fluxes. These models are driven by synoptic-scale heating fluctuations that have vertical and meridional tilts. Irrespective of the sign of the synoptic-scale meridional momentum flux (direction of the tilts) in each of the four MJO examples, the zonal and vertical mean meridional momentum flux convergence from the planetary scales always drives westerly winds near the equator: this is the superrotation characteristic of actual MJOs. The concluding discussion demonstrates that equatorial superrotation occurs when the planetary flow due to the vertical upscale momentum flux from synoptic scales reinforces the horizontally convergent flow due to planetary-scale mean heating.


Sign in / Sign up

Export Citation Format

Share Document