scholarly journals Space based observation of volcanic iodine monoxide

2016 ◽  
Author(s):  
Anja Schönhardt ◽  
Andreas Richter ◽  
Nicolas Theys ◽  
John P. Burrows

Abstract. Volcanic eruptions inject substantial amounts of halogens into the atmosphere. Chlorine and bromine oxides have frequently been observed in volcanic plumes from different instrumental platforms, from ground, aircraft as well as from satellite. The present study is the first observational evidence that iodine oxides are also emitted into the atmosphere during volcanic eruptions. Large column amounts of iodine monoxide, IO, have been observed in satellite measurements following the major eruption of the Kasatochi volcano, Alaska, in 2008. The IO signal is detected in measurements made both by SCIAMACHY on ENVISAT and GOME-2 on MetOp-A. Following the eruption on August 07, 2008, strongly elevated levels of IO slant columns of more than 4 × 1013 molec/cm2 are retrieved along the volcanic plume trajectories for several days. The retrieved IO columns from the different instruments are consistent and the spatial distribution of the IO plume is similar to that of BrO. Details in the spatial distribution, however, differ between IO, BrO and sulphur dioxide, SO2. The columns of IO are approximately one order of magnitude smaller than those of BrO. Using the GOME-2A observations, the total mass of IO in the volcanic plume injected into the atmosphere from the eruption of Kasatochi on August 07, 2008, is determined to be on the order of 10 Mg.

2017 ◽  
Vol 17 (7) ◽  
pp. 4857-4870 ◽  
Author(s):  
Anja Schönhardt ◽  
Andreas Richter ◽  
Nicolas Theys ◽  
John P. Burrows

Abstract. Volcanic eruptions inject substantial amounts of halogens into the atmosphere. Chlorine and bromine oxides have frequently been observed in volcanic plumes from different instrumental platforms such as from ground, aircraft and satellites. The present study is the first observational evidence that iodine oxides are also emitted into the atmosphere during volcanic eruptions. Large column amounts of iodine monoxide, IO, are observed in satellite measurements following the major eruption of the Kasatochi volcano, Alaska, in 2008. The IO signal is detected in measurements made both by SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY) on ENVISAT (Environmental Satellite) and GOME-2 (Global Ozone Monitoring Experiment-2) on MetOp-A (Meteorological Operational Satellite A). Following the eruption on 7 August 2008, strongly elevated levels of IO slant columns of more than 4 × 1013 molec cm−2 are retrieved along the volcanic plume trajectories for several days. The retrieved IO columns from the different instruments are consistent, and the spatial distribution of the IO plume is similar to that of bromine monoxide, BrO. Details in the spatial distribution, however, differ between IO, BrO and sulfur dioxide, SO2. The column amounts of IO are approximately 1 order of magnitude smaller than those of BrO. Using the GOME-2A observations, the total mass of IO in the volcanic plume injected into the atmosphere from the eruption of Kasatochi on 7 August 2008, is determined to be on the order of 10 Mg.


2008 ◽  
Vol 8 (24) ◽  
pp. 7723-7734 ◽  
Author(s):  
L. Clarisse ◽  
P. F. Coheur ◽  
A. J. Prata ◽  
D. Hurtmans ◽  
A. Razavi ◽  
...  

Abstract. In this paper we demonstrate the potential of the infrared Fourier transform spectrometer IASI in analysing volcanic eruptions, using the September 2007 eruption at Jebel at Tair as an illustrative example. Detailed radiative transfer calculations are presented, simulating IASI-like transmittance spectra for a variety of volcanic plumes. We analyse the sensitivity of IASI to SO2 at different altitudes and demonstrate that IASI is in principle capable of sensing SO2 down to the surface. Using the brightness temperature difference of well chosen SO2 channels as a filter, we are able to track the plume of the Jebel at Tair eruption for 12 days, on a par with state of the art UV sounders. A method is presented for quickly estimating the altitude of a volcanic plume based on the relative intensities of the SO2 absorption lines. Despite recent advances, it is still very challenging to retrieve vertical profiles of SO2 from nadir viewing satellites. Currently the most accurate profiles in nadir are retrieved using backtracking of the plume with atmospheric transport models. Via full inverse retrievals using the optimal estimation method, we show the possibility of extracting medium coarse vertical profiles from IASI data. The retrieval allows us to present an evolution of the total mass of SO2 in the plume for the Jebel at Tair eruption. An analytical relation is derived between brightness temperature differences and concentrations, which fits the experimental data very well. The spectral range of IASI also allows retrieval of volcanic aerosols. In the initial plume of the Jebel at Tair eruption, volcanic aerosols were found in the form of ice particles, for which we derived particle sizes.


2020 ◽  
Author(s):  
Johannes de Leeuw ◽  
Anja Schmidt ◽  
Claire Witham ◽  
Nicolas Theys ◽  
Richard Pope ◽  
...  

<p>Volcanic eruptions pose a serious threat to the aviation industry causing widespread disruption. To identify any potential impacts, nine Volcanic Ash Advisory Centres (VAACs) provide global monitoring of all eruptions, informing stakeholders how each volcanic eruption might interfere with aviation. Numerical dispersion models represent a vital infrastructure when assessing and forecasting the atmospheric conditions from a volcanic plume.</p><p>In this study we investigate the 2019 Raikoke eruption, which emitted approximately 1.5 Tg of sulfur dioxide (SO<sub>2</sub>) representing the largest volcanic emission of SO<sub>2</sub> into the stratosphere since the Nabro eruption in 2011. Using the UK Met Office’s Numerical Atmospheric-dispersion Modelling Environment (NAME), we simulate the evolution of the volcanic gas and aerosol particle plumes (SO<sub>2</sub> and sulfate, SO<sub>4</sub>) across the Northern Hemisphere between 21<sup>st</sup> June and 17<sup>th </sup>July. We evaluate the skills and limitations of NAME in terms of modelling volcanic SO<sub>2 </sub>plumes, by comparing our simulations to high-resolution measurements from the Tropospheric Monitoring Instrument (TROPOMI) on-board the European Space Agency (ESA)’s Sentinel 5 – Precursor (S5P) satellite.</p><p>Our comparisons show that NAME accurately simulates the observed location and shape of the SO<sub>2</sub> plume in the first few weeks after the eruption. NAME also reproduces the magnitude of the observed SO<sub>2 </sub>vertical column densities, when emitting 1.5 Tg of SO<sub>2</sub>, during the first 48 hours after the eruption. On longer timescales, we find that the model-simulated SO<sub>2 </sub>plume in NAME is more diffuse than in the TROPOMI measurements, resulting in an underestimation of the peak SO<sub>2</sub> vertical column densities in the model. This suggests that the diffusion parameters used in NAME are too large in the upper troposphere and lower stratosphere.</p><p>Finally, NAME underestimates the total mass of SO<sub>2</sub> when compared to estimates from TROPOMI, however emitting 2 Tg of SO<sub>2</sub> in the model improves the comparison, resulting in very good agreement with the satellite measurements.</p>


2008 ◽  
Vol 8 (4) ◽  
pp. 16917-16949 ◽  
Author(s):  
L. Clarisse ◽  
P. F. Coheur ◽  
A. J. Prata ◽  
D. Hurtmans ◽  
A. Razavi ◽  
...  

Abstract. In this paper we demonstrate the potential of the infrared Fourier transform spectrometer IASI in analysing volcanic eruptions, using the September 2007 eruption at Jebel at Tair as an illustrative example. Detailed radiative transfer calculations are presented, simulating IASI-like transmittance spectra for a variety of volcanic plumes. We analyse the sensitivity of IASI to SO2 at different altitudes and demonstrate that IASI is in principle capable of sensing SO2 down to the surface. Using the brightness temperature difference of well chosen SO2 channels as a filter, we are able to track the plume of the Jebel at Tair eruption for 12 days, on a par with state of the art UV sounders. A method is presented for quickly estimating the altitude of a volcanic plume based on the relative intensities of the SO2 absorption lines. Despite recent advances, it is still very challenging to retrieve vertical profiles of SO2 from nadir viewing satellites. Currently the most accurate profiles in nadir are retrieved using backtracking of the plume with atmospheric transport models. Via full inverse retrievals using the optimal estimation method, we show the possibility of extracting medium coarse vertical profiles from IASI data. The retrieval allows us to present an evolution of the total mass of SO2 in the plume for the Jebel at Tair eruption. An analytical relation is derived between brightness temperature differences and concentrations, which fits the experimental data very well. The spectral range of IASI also allows retrieval of volcanic aerosols. In the initial plume of the Jebel at Tair eruption, volcanic aerosols were found in the form of ice particles, for which we derived particle sizes.


2020 ◽  
Author(s):  
Anja Schoenhardt ◽  
Andreas Richter ◽  
Anne-Marlene Blechschmidt ◽  
Astrid Bracher ◽  
John P. Burrows

<p>Iodine compounds are mainly emitted from the oceans through organic and inorganic pathways followed by photolysis and reaction with ozone to create iodine monoxide (IO) molecules. Emission sources of iodine species include the sea surface, phytoplankton and macroalgae as well as volcanic eruptions. IO is an indicator of active iodine chemistry, which may be relevant for tropospheric composition due to its impact on ozone levels, the NO/NO<sub>2</sub> ratio and potential particle formation. Rapid changes in Polar sea ice coverage and conditions may have an impact on iodine levels in Polar Regions with respective consequences for tropospheric composition in the Arctic and Antarctic.</p><p>Differential Optical Absorption Spectroscopy is used to retrieve IO column densities from various satellite sensors, including SCIAMACHY (2002 to 2012), GOME-2 (since 2006) and TROPOMI (since 2017). Case studies are presented with a focus on the intercomparison of the retrieval quality and IO column densities from the applied instruments. Previous satellite studies have shown slightly enhanced IO column densities mainly above the Antarctic Region and within one occasion of a strong volcanic plume, while IO column densities in the Arctic remain mostly below the detection limit of the applied instruments.</p><p>Reported column densities of tropospheric IO, as previously measured from ground and from space, are fairly small and close to the detection limits of current and former satellite sensors. Optical depth values of IO absorption are on the order of a few times 10<sup>-4</sup>. Individual satellite spectra allow trace gas retrievals with residual RMS values which lie around and often above the expected IO absorption optical depth. This is a challenge for the identification of optimal retrieval settings, especially the choice of an adequate wavelength window. Several aspects for quality control are discussed. In addition to the immediate retrieval RMS, the IO standard deviation in areas with expected low IO absorption, consistency checks with other retrieval parameters as well as plausibility of IO column density results are considered.</p>


2021 ◽  
Author(s):  
Anja Schoenhardt ◽  
Andreas Richter ◽  
Anne-Marlene Blechschmidt ◽  
Astrid Bracher ◽  
John P. Burrows

<p>Iodine compounds are emitted from the ocean and ice covered areas through organic and inorganic pathways involving macroalgae and microalgae as well as inorganic surface processes and volcanic eruptions. Iodine monoxide (IO) molecules are produced after photolysis of precursors and reaction with ozone. IO is thus an indicator of active iodine chemistry, and impacts on ozone levels, the NO/NO<sub>2</sub> ratio and particle formation. Rapid changes in Polar sea ice coverage and conditions may affect iodine levels in Polar Regions with respective consequences for tropospheric composition in the Arctic and Antarctic.</p><p>Remote sensing of IO faces the challenge that IO column densities are fairly small with a maximum absorption optical depth on the order of a few times 10<sup>-4</sup>, which is close to the detection limit of satellite instruments. IO column densities are retrieved from several satellite sensors including SCIAMACHY (2002 to 2012), GOME-2 (since 2006) and TROPOMI (since 2017) by using Differential Optical Absorption Spectroscopy. Previous studies have shown slightly enhanced IO column densities above the Antarctic Region and in a strong volcanic plume, while IO column densities in the Arctic remain mostly below the detection limit. These areas are in the focus of iodine measurements from space. Retrieval quality and resulting IO column densities are investigated and compared between the different sensors with a focus on the recent instrument TROPOMI.</p><p>The small IO absorption signal complicates the identification of optimal retrieval settings, such as the choice of an adequate wavelength window. Aspects for quality control are discussed. In addition to the immediate retrieval RMS, also the IO standard deviation in (reference) areas with expected low IO absorption, consistency checks with other retrieval parameters as well as plausibility of IO column density results are considered. Finally, the idea of an ensemble retrieval strategy is discussed, which is based on the fact that for small trace gas quantities, the retrieval result depends unfavourably on the fit settings. After selection of reasonable quality criteria, the remaining fit parameter sets are all used for the retrieval of IO. The selected ensemble of parameter sets yields a result for IO as well as uncertainty estimates induced by the choice of fit settings. Due to computational effort, application of this strategy is restricted to case studies.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Suvarna Fadnavis ◽  
Rolf Müller ◽  
Tanusri Chakraborty ◽  
T. P. Sabin ◽  
Anton Laakso ◽  
...  

AbstractThe Indian summer monsoon rainfall (ISMR) is vital for the livelihood of millions of people in the Indian region; droughts caused by monsoon failures often resulted in famines. Large volcanic eruptions have been linked with reductions in ISMR, but the responsible mechanisms remain unclear. Here, using 145-year (1871–2016) records of volcanic eruptions and ISMR, we show that ISMR deficits prevail for two years after moderate and large (VEI > 3) tropical volcanic eruptions; this is not the case for extra-tropical eruptions. Moreover, tropical volcanic eruptions strengthen El Niño and weaken La Niña conditions, further enhancing Indian droughts. Using climate-model simulations of the 2011 Nabro volcanic eruption, we show that eruption induced an El Niño like warming in the central Pacific for two consecutive years due to Kelvin wave dissipation triggered by the eruption. This El Niño like warming in the central Pacific led to a precipitation reduction in the Indian region. In addition, solar dimming caused by the volcanic plume in 2011 reduced Indian rainfall.


Author(s):  
Stephen A Solovitz

Abstract Following volcanic eruptions, forecasters need accurate estimates of mass eruption rate (MER) to appropriately predict the downstream effects. Most analyses use simple correlations or models based on large eruptions at steady conditions, even though many volcanoes feature significant unsteadiness. To address this, a superposition model is developed based on a technique used for spray injection applications, which predicts plume height as a function of the time-varying exit velocity. This model can be inverted, providing estimates of MER using field observations of a plume. The model parameters are optimized using laboratory data for plumes with physically-relevant exit profiles and Reynolds numbers, resulting in predictions that agree to within 10% of measured exit velocities. The model performance is examined using a historic eruption from Stromboli with well-documented unsteadiness, again providing MER estimates of the correct order of magnitude. This method can provide a rapid alternative for real-time forecasting of small, unsteady eruptions.


2021 ◽  
Author(s):  
Rafael Castro ◽  
Tushar Mittal ◽  
Stephen Self

<p>The 1883 Krakatau eruption is one of the most well-known historical volcanic eruptions due to its significant global climate impact as well as first recorded observations of various aerosol associated optical and physical phenomena. Although much work has been done on the former by comparison of global climate model predictions/ simulations with instrumental and proxy climate records, the latter has surprisingly not been studied in similar detail. In particular, there is a wealth of observations of vivid red sunsets, blue suns, and other similar features, that can be used to analyze the spatio-temporal dispersal of volcanic aerosols in summer to winter 1883. Thus, aerosol cloud dispersal after the Krakatau eruption can be estimated, bolstered by aerosol cloud behavior as monitored by satellite-based instrument observations after the 1991 Pinatubo eruption. This is one of a handful of large historic eruptions where this analysis can be done (using non-climate proxy methods). In this study, we model particle trajectories of the Krakatau eruption cloud using the Hysplit trajectory model and compare our results with our compiled observational dataset (principally using Verbeek 1884, the Royal Society report, and Kiessling 1884).</p><p>In particular, we explore the effect of different atmospheric states - the quasi-biennial oscillation (QBO) which impacts zonal movement of the stratospheric volcanic plume - to estimate the phase of the QBO in 1883 required for a fast-moving westward cloud. Since this alone is unable to match the observed latitudinal spread of the aerosols, we then explore the impact of an  umbrella cloud (2000 km diameter) that almost certainly formed during such a large eruption. A large umbrella cloud, spreading over ~18 degrees within the duration of the climax of the eruption (6-8 hours), can lead to much quicker latitudinal spread than a point source (vent). We will discuss the results of the combined model (umbrella cloud and correct QBO phase) with historical accounts and observations, as well as previous work on the 1991 Pinatubo eruption. We also consider the likely impacts of water on aerosol concentrations and the relevance of this process for eruptions with possible significant seawater interactions, like Krakatau. We posit that the role of umbrella clouds is an under-appreciated, but significant, process for beginning to model the climatic impacts of large volcanic eruptions.</p>


2018 ◽  
Author(s):  
Xue Wu ◽  
Sabine Griessbach ◽  
Lars Hoffmann

Abstract. Volcanic sulfate aerosol is an important source of sulfur for Antarctica where other local sources of sulfur are rare. Mid- and high latitude volcanic eruptions can directly influence the aerosol budget of the polar stratosphere. However, tropical eruptions can also enhance polar aerosol load following long-range transport. In the present work, we analyze the volcanic plume of a tropical eruption, Mount Merapi in October 2010, using the Lagrangian particle dispersion model Massive-Parallel Trajectory Calculations (MPTRAC), Atmospheric Infrared Sounder (AIRS) SO2 observations and Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aerosol observations. We investigate the pathway and transport efficiency of the volcanic aerosol from the tropical tropopause layer (TTL) to the lower stratosphere over Antarctica. We first estimated the time- and height-resolved SO2 injection time series over Mount Merapi during the explosive eruption using the AIRS SO2 observations and a backward trajectory approach. Then the SO2 injections were tracked for up to 6 months using the MPTRAC model. The Lagrangian transport simulation of the volcanic plume was compared to MIPAS aerosol observations and showed good agreement. Both of the simulation and the observations presented in this study suggest that a significant amount of aerosols of the volcanic plume from the Merapi eruption was transported from the tropics to the south of 60 °S within one month after the eruption and even further to Antarctica in the following two months. This relatively fast meridional transport of volcanic aerosol was mainly driven by quasi-horizontal mixing from the TTL to the extratropical lower stratosphere, which was facilitated by the weakening of the subtropical jet during the seasonal transition from austral spring to summer and linked to the westerly phase of the quasi-biennial oscillation (QBO). When the plume went to southern high latitudes, the polar vortex was displaced from the south pole, so the volcanic plume was carried to the south pole without penetrating the polar vortex. Based on the model results, the most efficient pathway for the quasi-horizontal mixing was in between the isentropic surfaces of 360 and 430 K. Although only 4 % of the initial SO2 load was transported into the lower stratosphere south of 60 °S, the Merapi eruption contributed about 8800 tons of sulfur to the Antarctic lower stratosphere. This indicates that the long-range transport under favorable meteorological conditions enables tropical volcanic eruptions to be an important remote source of sulfur for the Antarctic stratosphere.


Sign in / Sign up

Export Citation Format

Share Document