scholarly journals Wildfires as a source of airborne mineral dust – Revisiting a conceptual model using Large-Eddy simulations (LES)

2018 ◽  
Author(s):  
Robert Wagner ◽  
Michael Jähn ◽  
Kerstin Schepanski

Abstract. Airborne mineral dust is a key player in the Earth system and shows manifold of impacts on atmospheric properties such as the radiation budget and cloud micro-physics. Investigations of smoke plumes originating from wildfires found significant fractions of mineral dust within these plumes – raised by strong turbulent winds related to the fire. The present study revisits the conceptual model describing the emission of mineral dust particles during wildfires by pyro-convection as described by the literature. This is achieved by means of high resolved Large-Eddy simulations (LES), conducted with the All Scale Atmospheric Model (ASAM). The impact of different fire properties representing typical grassland and shrubland fires, and different ambient atmospheric conditions on the fire-driven winds and their capability to mobilize mineral dust particles were investigated. Results from this study illustrate that the energy release of the fire leads to a strong increase in strength and frequency of occurrence of intense near-surface winds, which exceed typical threshold velocities inevitably required for dust emissions. The fire-induced modulations of the wind field can be transported up to some kilometers downstream of the fire area and are able to favor dust emissions also in some distance to the fire area. Although measurements showed already the importance of wildfires on dust emissions, pyro-convection is so far neglected as a dust emission process in atmosphere-aerosol models. The results presented in this study can be seen as the first step towards a systematic parameterization representing the connection between typical fire properties and related dust emissions, which eventually can be implemented in larger-scale aerosol models ultimately contributing to the reduction of uncertainties in the aerosol-climate feedback.

2018 ◽  
Vol 18 (16) ◽  
pp. 11863-11884 ◽  
Author(s):  
Robert Wagner ◽  
Michael Jähn ◽  
Kerstin Schepanski

Abstract. Airborne mineral dust is a key player in the Earth system and shows manifold impacts on atmospheric properties such as the radiation budget and cloud microphysics. Investigations of smoke plumes originating from wildfires found significant fractions of mineral dust within these plumes – most likely raised by strong, turbulent fire-related winds. This study presents and revisits a conceptual model describing the emission of mineral dust particles during wildfires. This is achieved by means of high-resolution large-eddy simulation (LES), conducted with the All Scale Atmospheric Model (ASAM). The impact of (a) different fire properties representing idealized grassland and shrubland fires, (b) different ambient wind conditions modulated by the fire's energy flux, and (c) the wind's capability to mobilize mineral dust particles was investigated. Results from this study illustrate that the energy release of the fire leads to a significant increase in near-surface wind speed, which consequently enhances the dust uplift potential. This is in particular the case within the fire area where vegetation can be assumed to be widely removed and uncovered soil is prone to wind erosion. The dust uplift potential is very sensitive to fire properties, such as fire size, shape, and intensity, but also depends on the ambient wind velocity. Although measurements already showed the importance of wildfires for dust emissions, pyro-convection is so far neglected as a dust emission process in atmosphere–aerosol models. The results presented in this study can be seen as the first step towards a systematic parameterization representing the connection between typical fire properties and related dust emissions.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ibrahima Diba ◽  
Jules Basse ◽  
Mamadou Ndiaye ◽  
Hamady Ngansou Sabaly ◽  
Arona Diedhiou ◽  
...  

The aim of this study is to simulate the impact of mineral dust emissions from the Sahel–Saharan zone on temperature extremes over the Sahel. To achieve this goal, we performed two numerical simulations: one with the standard version of the regional climate model RegCM4 (no dust run) and another one with the same version of this model incorporating a dust module (dust run). The difference between both versions of the model allowed to isolate the impacts of mineral dust emissions on temperature extremes. The results show that the accumulation of mineral dust into the atmosphere leads to a decrease of the frequency of warm days, very warm days, and warm nights over the Sahel. This decrease is higher during the MAM (March-April-May) and JJA (June-July-August) periods especially in the northern and western parts of the Sahel. The impact of the mineral dust emissions is also manifested by a decrease of the frequency of tropical nights especially during MAM in the northern Sahel. When considering the warm spells, mineral particles tend to weaken them especially in MAM and JJA in the northern Sahel. To estimate the potential impacts of the mineral dust accumulation on heat stress, the heat index and the humidex are used. The analysis of the heat index shows that the dust impact is to reduce the health risks particularly in the northern Sahel during the MAM period, in the western Sahel during JJA, and in the southern and the northeastern parts of the Sahel during the SON (September-October-November) period. As for the humidex, it is characterized by a decrease especially in the northern Sahel for all seasons. This reduction of the occurrence of thermal extremes may have a positive effect on the energy demand for cooling and on global health. However, the accumulation of dust particles in the atmosphere may also increase the meningitis incidence and prevalence.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 125
Author(s):  
Mariola Jabłońska ◽  
Janusz Janeczek ◽  
Beata Smieja-Król

For the first time, it is shown that inhaled ambient air-dust particles settled in the human lower respiratory tract induce lung calcification. Chemical and mineral compositions of pulmonary calcium precipitates in the lung right lower-lobe (RLL) tissues of 12 individuals who lived in the Upper Silesia conurbation in Poland and who had died from causes not related to a lung disorder were determined by transmission and scanning electron microscopy. Whereas calcium salts in lungs are usually reported as phosphates, calcium salts precipitated in the studied RLL tissue were almost exclusively carbonates, specifically Mg-calcite and calcite. These constituted 37% of the 1652 mineral particles examined. Mg-calcite predominated in the submicrometer size range, with a MgCO3 content up to 50 mol %. Magnesium plays a significant role in lung mineralization, a fact so far overlooked. The calcium phosphate (hydroxyapatite) content in the studied RLL tissue was negligible. The predominance of carbonates is explained by the increased CO2 fugacity in the RLL. Carbonates enveloped inhaled mineral-dust particles, including uranium-bearing oxides, quartz, aluminosilicates, and metal sulfides. Three possible pathways for the carbonates precipitation on the dust particles are postulated: (1) precipitation of amorphous calcium carbonate (ACC), followed by its transformation to calcite; (2) precipitation of Mg-ACC, followed by its transformation to Mg-calcite; (3) precipitation of Mg-free ACC, causing a localized relative enrichment in Mg ions and subsequent heterogeneous nucleation and crystal growth of Mg-calcite. The actual number of inhaled dust particles may be significantly greater than was observed because of the masking effect of the carbonate coatings. There is no simple correlation between smoking habit and lung calcification.


2010 ◽  
Vol 64 (2) ◽  
Author(s):  
Paulina Pianko-Oprych ◽  
Zdzisław Jaworski

AbstractThe main purpose of the paper is to apply the large eddy simulations (LES) technique and to verify its use as a predicting tool for turbulent liquid-liquid flow in an SMX static mixer. LES modeling was carried out using the Smagorinsky-Lilly model of the turbulent subgrid viscosity for the Reynolds number of 5000 and 10000. The continuous phase was water and the dispersed phase was silicon oil. The investigation covers the effects of the density ratio between the phases. Three different cases of liquid densities were considered. The dispersed phase concentration distribution in the mixer cross-sections was compared with the corresponding time averaged results obtained formerly for the same configuration in a steady-state simulation using the standard RANS approach with the k-ɛ model. The dependency of the standard deviation of the dispersed phase concentration on the distance from the mixer inlet and the impact of the centrifugal force on the phase concentration distribution were investigated. The presented results for the SMX static mixer confirm conclusions of previous studies by Jaworski et al. (2006) obtained for a Kenics static mixer and show less a pronounced influence of the centrifugal force on the phase concentration distribution of the LES results in comparison to the RANS case.


Author(s):  
Mariola Jablonska ◽  
Janusz Janeczek ◽  
Beata Smieja-Król

For the first time, it is shown that inhaled ambient air-dust particles settled in the human lower respiratory tract induce lung calcification. Chemical- and mineral compositions of pulmonary calcium precipitates in the lung right lower-lobe (RLL) tissues of 12 individuals who lived in Upper Silesia Conurbation in Poland and who had died from causes not related to lung disorder were determined by transmission- and scanning electron microscopy. Whereas calcium salts in lungs are usually reported as phosphates, calcium salts precipitated in RLL are almost exclusively carbonates, i.e. Mg-calcite and calcite. These constitute 37% of 1652 mineral particles examined. Mg-calcite predominates in the submicron size range with the MgCO3 content up to 50 mol%. Magnesium plays a significant role in the lung mineralization, a fact so far overlooked. The calcium phosphate (hydroxyapatite) content in RLL is negligible. The predominance of carbonates is explained by increased CO2 fugacity in RLL. Carbonates enveloped inhaled mineral-dust particles, including uranium-bearing oxides, quartz, aluminosilicates, and metal sulfides. Three possible pathways for the carbonates precipitation on the dust particles are postulated: (1) precipitation of amorphous calcium carbonate (ACC) followed by its transformation to calcite; (2) precipitation of Mg-ACC followed by its transformation to Mg-calcite; (3) precipitation of Mg-free ACC causing a localized relative enrichment in Mg ions and subsequent heterogeneous nucleation and crystal growth of Mg-calcite. The actual number of inhaled dust particles may be significantly greater than observed because of the masking effect of the carbonate coatings. There is no simple correlation between smoking habit and lung calcification.


2013 ◽  
Vol 13 (12) ◽  
pp. 31891-31932 ◽  
Author(s):  
R. Paoli ◽  
O. Thouron ◽  
J. Escobar ◽  
J. Picot ◽  
D. Cariolle

Abstract. Large-eddy simulations of sub-kilometer-scale turbulence in the upper troposphere lower stratosphere (UTLS) are carried out and analyzed using the mesoscale atmospheric model Méso-NH. Different levels of turbulence are generated using a large-scale stochastic forcing technique that was especially devised to treat atmospheric stratified flows. The study focuses on the analysis of turbulence statistics, including mean quantities and energy spectra, as well as on a detailed description of flow topology. The impact of resolution is also discussed by decreasing the grid spacing to 2 m and increasing the number of grid points to 8×109. Because of atmospheric stratification, turbulence is substantially anisotropic, and large elongated structures form in the horizontal directions, in accordance with theoretical analysis and spectral direct numerical simulations of stably stratified flows. It is also found that the inertial range of horizontal kinetic energy spectrum, generally observed at scales larger than a few kilometers, is prolonged into the sub-kilometric range, down to the Ozmidov scales that obey isotropic Kolmorogov turbulence. The results are in line with observational analysis based on in situ measurements from existing campaigns.


Author(s):  
Charlie Koupper ◽  
Jean Lamouroux ◽  
Stephane Richard ◽  
Gabriel Staffelbach

In a gas turbine, the combustor is feeding the turbine with hot gases at a high level of turbulence which in turns strongly enhances the heat transfer in the turbine. It is thus of primary importance to properly characterize the turbulence properties found at the exit of a combustor to design the turbine at its real thermal constraint. This being said, real engine measurements of turbulence are extremely rare if not inexistent because of the harsh environment and difficulty to implement experimental techniques that usually operate at isothermal conditions (e.g. hot wire anemometry). As a counterpart, high fidelity unsteady numerical simulations using Large Eddy Simulations (LES) are now mature enough to simulate combustion processes and turbulence within gas turbine combustors. It is thus proposed here to assess the LES methodology to qualify turbulence within a real helicopter engine combustor operating at take-off conditions. In LES, the development of turbulence is primarily driven by the level of real viscosity in the calculation, which is the sum of three contributions: laminar (temperature linked), turbulent (generated by the sub-grid scale model) and artificial (numerics dependent). In this study, the impact of the two main sources of un-desired viscosity is investigated: the mesh refinement and numerical scheme. To do so, three grids containing 11, 33 and 220 million cells for a periodic sector of the combustor are tested as well as centred second (Lax-Wendroff) and third order (TTGC) in space schemes. The turbulence properties (intensity and integral scales) are evaluated based on highly sampled instantaneous solutions and compared between the available simulations. Results show first that the duration of the simulation is important to properly capture the level of turbulence. If short simulations (a few combustor through-times) may be sufficient to evaluate the turbulence intensity, a bias up to 14% is introduced for the turbulence length scales. In terms of calculation set-up, the mesh refinement is found to have a limited influence on the turbulence properties. The numerical scheme influence on the quantities studied here is small, highlighting that the employed schemes dissipation properties are already sufficient for turbulence characterization. Finally, spatially averaged values of turbulence intensity and lengthscale at the combustor exit are almost identically predicted in all cases. However, significant variations from hub to tip are reported, which questions the pertinence to use 0-D turbulence boundary conditions for turbines. Based on the set of simulations discussed in the paper, guidelines can be derived to adequately set-up (mesh, scheme) and run (duration, acquisition frequency) a LES when turbulence evaluation is concerned. As no experimental counterpart to this study is available, the conclusions mainly aim at knowing the possible numerical bias rather than commenting on the predictivity of the approach.


Author(s):  
Alessio Pappa ◽  
Laurent Bricteux ◽  
Pierre Bénard ◽  
Ward De Paepe

Abstract Considering the growing interest in Power-to-Fuel, i.e. production of H2 using electrolysis to store excess renewable electricity, combustion-based technologies still have a role to play in the future of power generation. Hydrogen combustion is well-known to lead to combustion instabilities. The high temperatures and reaction rates can potentially lead to flashback. In the past, combustion air humidification has proven effective to reduce temperatures and reaction rates. Therefore, humidification can open a path to stabilize hydrogen combustion. However, accurate data assessing the impact of humidification on the combustion is still missing for real mGT combustor geometries and operating conditions. This paper presents a comparison between pure methane and hydrogen enriched methane/air combustions, with and without air humidification, in a typical mGT combustion chamber (Turbec T100) using Large Eddy Simulations analysis. In a first step, the necessary minimal water dilution, to reach stable combustion with hydrogen, was assessed using a 1D approach. The one-dimensional unstretched laminar flame is computed for both pure methane (reference case) and hydrogen enriched cases. The results of this comparison show that the same level of flame speed as in the reference case can be reached by adding 10% (in mass fraction) of water. In a second step, high fidelity LES on the 3D geometry are performed to show that water dilution helped to lower the temperature and reaction rate of hydrogen at same levels as reference case, and thus prevents flashback, enabling the use of hydrogen blends in the mGT.


2010 ◽  
Vol 10 (18) ◽  
pp. 8821-8838 ◽  
Author(s):  
C. Zhao ◽  
X. Liu ◽  
L. R. Leung ◽  
B. Johnson ◽  
S. A. McFarlane ◽  
...  

Abstract. A fully coupled meteorology-chemistry-aerosol model (WRF-Chem) is applied to simulate mineral dust and its shortwave (SW) radiative forcing over North Africa. Two dust emission schemes (GOCART and DUSTRAN) and two aerosol models (MADE/SORGAM and MOSAIC) are adopted in simulations to investigate the modeling sensitivities to dust emissions and aerosol size treatments. The modeled size distribution and spatial variability of mineral dust and its radiative properties are evaluated using measurements (ground-based, aircraft, and satellites) during the AMMA SOP0 campaign from 6 January to 3 February of 2006 (the SOP0 period) over North Africa. Two dust emission schemes generally simulate similar spatial distributions and temporal evolutions of dust emissions. Simulations using the GOCART scheme with different initial (emitted) dust size distributions require ~40% difference in total emitted dust mass to produce similar SW radiative forcing of dust over the Sahel region. The modal approach of MADE/SORGAM retains 25% more fine dust particles (radius<1.25 μm) but 8% less coarse dust particles (radius>1.25 μm) than the sectional approach of MOSAIC in simulations using the same size-resolved dust emissions. Consequently, MADE/SORGAM simulates 11% higher AOD, up to 13% lower SW dust heating rate, and 15% larger (more negative) SW dust radiative forcing at the surface than MOSAIC over the Sahel region. In the daytime of the SOP0 period, the model simulations show that the mineral dust heats the lower atmosphere with an average rate of 0.8 ± 0.5 K day−1 over the Niamey vicinity and 0.5 ± 0.2 K day−1 over North Africa and reduces the downwelling SW radiation at the surface by up to 58 W m−2 with an average of 22 W m−2 over North Africa. This highlights the importance of including dust radiative impact in understanding the regional climate of North Africa. When compared to the available measurements, the WRF-Chem simulations can generally capture the measured features of mineral dust and its radiative properties over North Africa, suggesting that the model is suitable for more extensive simulations of dust impact on regional climate over North Africa.


Sign in / Sign up

Export Citation Format

Share Document