scholarly journals The Impact of Ambient Atmospheric Mineral-Dust Particles on the Calcification of Lungs

Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 125
Author(s):  
Mariola Jabłońska ◽  
Janusz Janeczek ◽  
Beata Smieja-Król

For the first time, it is shown that inhaled ambient air-dust particles settled in the human lower respiratory tract induce lung calcification. Chemical and mineral compositions of pulmonary calcium precipitates in the lung right lower-lobe (RLL) tissues of 12 individuals who lived in the Upper Silesia conurbation in Poland and who had died from causes not related to a lung disorder were determined by transmission and scanning electron microscopy. Whereas calcium salts in lungs are usually reported as phosphates, calcium salts precipitated in the studied RLL tissue were almost exclusively carbonates, specifically Mg-calcite and calcite. These constituted 37% of the 1652 mineral particles examined. Mg-calcite predominated in the submicrometer size range, with a MgCO3 content up to 50 mol %. Magnesium plays a significant role in lung mineralization, a fact so far overlooked. The calcium phosphate (hydroxyapatite) content in the studied RLL tissue was negligible. The predominance of carbonates is explained by the increased CO2 fugacity in the RLL. Carbonates enveloped inhaled mineral-dust particles, including uranium-bearing oxides, quartz, aluminosilicates, and metal sulfides. Three possible pathways for the carbonates precipitation on the dust particles are postulated: (1) precipitation of amorphous calcium carbonate (ACC), followed by its transformation to calcite; (2) precipitation of Mg-ACC, followed by its transformation to Mg-calcite; (3) precipitation of Mg-free ACC, causing a localized relative enrichment in Mg ions and subsequent heterogeneous nucleation and crystal growth of Mg-calcite. The actual number of inhaled dust particles may be significantly greater than was observed because of the masking effect of the carbonate coatings. There is no simple correlation between smoking habit and lung calcification.

Author(s):  
Mariola Jablonska ◽  
Janusz Janeczek ◽  
Beata Smieja-Król

For the first time, it is shown that inhaled ambient air-dust particles settled in the human lower respiratory tract induce lung calcification. Chemical- and mineral compositions of pulmonary calcium precipitates in the lung right lower-lobe (RLL) tissues of 12 individuals who lived in Upper Silesia Conurbation in Poland and who had died from causes not related to lung disorder were determined by transmission- and scanning electron microscopy. Whereas calcium salts in lungs are usually reported as phosphates, calcium salts precipitated in RLL are almost exclusively carbonates, i.e. Mg-calcite and calcite. These constitute 37% of 1652 mineral particles examined. Mg-calcite predominates in the submicron size range with the MgCO3 content up to 50 mol%. Magnesium plays a significant role in the lung mineralization, a fact so far overlooked. The calcium phosphate (hydroxyapatite) content in RLL is negligible. The predominance of carbonates is explained by increased CO2 fugacity in RLL. Carbonates enveloped inhaled mineral-dust particles, including uranium-bearing oxides, quartz, aluminosilicates, and metal sulfides. Three possible pathways for the carbonates precipitation on the dust particles are postulated: (1) precipitation of amorphous calcium carbonate (ACC) followed by its transformation to calcite; (2) precipitation of Mg-ACC followed by its transformation to Mg-calcite; (3) precipitation of Mg-free ACC causing a localized relative enrichment in Mg ions and subsequent heterogeneous nucleation and crystal growth of Mg-calcite. The actual number of inhaled dust particles may be significantly greater than observed because of the masking effect of the carbonate coatings. There is no simple correlation between smoking habit and lung calcification.


Environments ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 114
Author(s):  
Jiří Bílek ◽  
Ondřej Bílek ◽  
Petr Maršolek ◽  
Pavel Buček

Sensor technology is attractive to the public due to its availability and ease of use. However, its usage raises numerous questions. The general trustworthiness of sensor data is widely discussed, especially with regard to accuracy, precision, and long-term signal stability. The VSB-Technical University of Ostrava has operated an air quality sensor network for more than two years, and its large sets of valid results can help in understanding the limitations of sensory measurement. Monitoring is focused on the concentrations of dust particles, NO2, and ozone to verify the impact of newly planted greenery on the reduction in air pollution. The sensor network currently covers an open field on the outskirts of Ostrava, between Liberty Ironworks and the nearby ISKO1650 monitoring station, where some of the worst air pollution levels in the Czech Republic are regularly measured. In the future, trees should be allowed to grow over the sensors, enabling assessment of the green barrier effect on air pollution. As expected, the service life of the sensors varies from 1 to 3 years; therefore, checks are necessary both prior to the measurement and regularly during operation, verifying output stability and overall performance. Results of the PMx sensory measurements correlated well with the reference method. Concentration values measured by NO2 sensors correlated poorly with the reference method, although timeline plots of concentration changes were in accordance. We suggest that a comparison of timelines should be used for air quality evaluations, rather than particular values. The results showed that the sensor measurements are not yet suitable to replace the reference methods, and dense sensor networks proved useful and robust tools for indicative air quality measurements (AQM).


2018 ◽  
Author(s):  
Robert Wagner ◽  
Michael Jähn ◽  
Kerstin Schepanski

Abstract. Airborne mineral dust is a key player in the Earth system and shows manifold of impacts on atmospheric properties such as the radiation budget and cloud micro-physics. Investigations of smoke plumes originating from wildfires found significant fractions of mineral dust within these plumes – raised by strong turbulent winds related to the fire. The present study revisits the conceptual model describing the emission of mineral dust particles during wildfires by pyro-convection as described by the literature. This is achieved by means of high resolved Large-Eddy simulations (LES), conducted with the All Scale Atmospheric Model (ASAM). The impact of different fire properties representing typical grassland and shrubland fires, and different ambient atmospheric conditions on the fire-driven winds and their capability to mobilize mineral dust particles were investigated. Results from this study illustrate that the energy release of the fire leads to a strong increase in strength and frequency of occurrence of intense near-surface winds, which exceed typical threshold velocities inevitably required for dust emissions. The fire-induced modulations of the wind field can be transported up to some kilometers downstream of the fire area and are able to favor dust emissions also in some distance to the fire area. Although measurements showed already the importance of wildfires on dust emissions, pyro-convection is so far neglected as a dust emission process in atmosphere-aerosol models. The results presented in this study can be seen as the first step towards a systematic parameterization representing the connection between typical fire properties and related dust emissions, which eventually can be implemented in larger-scale aerosol models ultimately contributing to the reduction of uncertainties in the aerosol-climate feedback.


2010 ◽  
Vol 10 (22) ◽  
pp. 10771-10788 ◽  
Author(s):  
T. Stanelle ◽  
B. Vogel ◽  
H. Vogel ◽  
D. Bäumer ◽  
C. Kottmeier

Abstract. We used the comprehensive model system COSMO-ART to quantify the impact of mineral dust on the radiative fluxes, the temperature and the feedback between dust particles and their emissions. We simulated two dust storms over West Africa in March 2006 and in June 2007. Simulations with and without coupling of the actual dust concentration with the radiative fluxes and the thermodynamics were carried out for each case. The model results for the 2006 case were compared with observations of the AMMA campaign. At the surface the shortwave radiative effect of mineral dust can be described by a linear relation between the changes in net surface radiation and the aerosol optical depth (AOD). For an AOD at 450 nm of 1 the average shortwave radiation reduction amounts −140 W m−2 during noon. The longwave radiative effect of mineral dust is nonlinear, with an average increase of +70 W m−2 for an AOD (450 nm) of 1. At the top of the atmosphere the effect of the dust layer with an AOD of 1 on radiative fluxes is not as significant as at the surface. It is slightly positive for the shortwave and approximately 26 W m−2 for the longwave radiation. The height range and the extension of the dust layer determine the effect of dust particles on the 2 m temperature. When the dust layer is attached to the surface and lasts for several days it leads to an increase of the surface temperature even during daytime. In case of an elevated dust layer there is a decrease in 2 m temperature of up to 4 K during noon. It is shown, that the temperature changes caused by mineral dust may result in horizontal temperature gradients which also modify near surface winds. Since surface wind thresholds decide the uptake of dust from the surface, a feedback on total emission fluxes is established. The coupled model provides an increase in the total emission fluxes of dust particles by about 16% during the dust storm in March 2006 and 25% during the dust episode in June 2007.


2011 ◽  
Vol 11 (12) ◽  
pp. 32363-32390 ◽  
Author(s):  
L. Smoydzin ◽  
A. Teller ◽  
H. Tost ◽  
M. Fnais ◽  
J. Lelieveld

Abstract. We present a numerical modelling study investigating the impact of mineral dust on cloud formation over the Eastern Mediterranean for two case studies: (i) 25 September 2008 and (ii) 28/29 January 2003. On both days dust plumes crossed the Mediterranean and interacted with clouds forming along frontal systems. For our investigation we used the fully online coupled model WRF-chem. The results show that increased aerosol concentrations due to the presence of mineral dust can enhance the formation of ice crystals. This leads to slight shifts of the spatial and temporal precipitation patterns compared to scenarios where dust was not considered to act as ice nuclei. However, the total amount of precipitation did not change significantly. The only exception occurred when dust entered into an area of orographic ascent, causing glaciation of the clouds, leading to a local enhancement of rainfall. The impact of dust particles acting as giant cloud condensation nuclei on precipitation formation was found to be small. Based on our simulations the contribution of dust to the CCN population is potentially significant only for warm phase clouds. Nevertheless, the dust-induced differences in the microphysical structure of the clouds can contribute to a significant radiative forcing.


2018 ◽  
Vol 18 (24) ◽  
pp. 18203-18217 ◽  
Author(s):  
Yu Tian ◽  
Xiaole Pan ◽  
Tomoaki Nishizawa ◽  
Hiroshi Kobayashi ◽  
Itsushi Uno ◽  
...  

Abstract. East Asia is suffering from severe air pollution problems due to intensive anthropogenic emissions and natural mineral dust aerosols. During transport, the aerosol particles undergo complex mixing processes, resulting in great impacts on regional air quality, human health and climate. In this study, we conducted a long-term observation using an optical particle counter equipped with a polarization detection module (POPC) at an urban site in Beijing. Mass concentrations of both PM2.5 and PM10 estimated from POPC compared well with ground-based measurements. The results revealed that the observed depolarization ratio (δ, termed as the ratio of the intensity of the s-polarized signal to the intensity of the 120∘ backward scattering signal [s/(s+p)]) for aerosol particles in the fine mode was generally much lower in summer than that in spring as a result of predominance of different aerosol types. Mineral dust particles in the coarse mode normally had a large δ value (0.3±0.05) owing to their nonspherical shape; however, particles in the fine mode mostly had water-soluble compositions, which led to an apparent decrease of their δ values in particular high relative humidity (RH) conditions. Because the observation site was subject to the impact of frequent dust events in spring, the δ value of particle at 1 µm was almost twice as high as that (0.07±0.01) in summer. Based on size-resolved δ values, anthropogenic pollutants, mineral dust and polluted mineral dust particles and their contribution to local air quality could be well distinguished. About 26.7 % of substandard days (daily averaged PM2.5 concentration larger than 75 µg m−3) in Beijing featured high atmospheric loading of coarse-mode particles in winter and springtime. In particular, during severe pollution episodes in winter, the δ values of coarse-mode particles decreased by 13 %, which implies a high possibility of dust-related heterogeneous processes in pollution formation. During dust events, δ values of particles with optical size (Dp) of 5 µm evidently decreased, with an increase of the PM2.5 ∕ PM10 ratio as well as RH, indicating the morphological changes of mineral dust. This study confirmed that high RH tends to promote water absorption processes on the dust surface as well as the coating of soluble compounds, and suggested that remote sensing techniques for aerosols may underestimate the impact of dust particles due to the complex mixing of dust and anthropogenic particles in urban areas, and the interaction between dust particles and pollutants should be considered well by the optical model.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ibrahima Diba ◽  
Jules Basse ◽  
Mamadou Ndiaye ◽  
Hamady Ngansou Sabaly ◽  
Arona Diedhiou ◽  
...  

The aim of this study is to simulate the impact of mineral dust emissions from the Sahel–Saharan zone on temperature extremes over the Sahel. To achieve this goal, we performed two numerical simulations: one with the standard version of the regional climate model RegCM4 (no dust run) and another one with the same version of this model incorporating a dust module (dust run). The difference between both versions of the model allowed to isolate the impacts of mineral dust emissions on temperature extremes. The results show that the accumulation of mineral dust into the atmosphere leads to a decrease of the frequency of warm days, very warm days, and warm nights over the Sahel. This decrease is higher during the MAM (March-April-May) and JJA (June-July-August) periods especially in the northern and western parts of the Sahel. The impact of the mineral dust emissions is also manifested by a decrease of the frequency of tropical nights especially during MAM in the northern Sahel. When considering the warm spells, mineral particles tend to weaken them especially in MAM and JJA in the northern Sahel. To estimate the potential impacts of the mineral dust accumulation on heat stress, the heat index and the humidex are used. The analysis of the heat index shows that the dust impact is to reduce the health risks particularly in the northern Sahel during the MAM period, in the western Sahel during JJA, and in the southern and the northeastern parts of the Sahel during the SON (September-October-November) period. As for the humidex, it is characterized by a decrease especially in the northern Sahel for all seasons. This reduction of the occurrence of thermal extremes may have a positive effect on the energy demand for cooling and on global health. However, the accumulation of dust particles in the atmosphere may also increase the meningitis incidence and prevalence.


2021 ◽  
Author(s):  
Eleni Drakaki ◽  
Alexandra Tsekeri ◽  
Vasillis Amiridis ◽  
Stavros Solomos ◽  
Antonis Gkikas ◽  
...  

<p>Mineral dust is an important component of the climate system, affecting radiation, cloud formation, biogeochemical cycles, as well as having negative effects on solar energy budget and human health. All these processes are affected from the size of the particles which is significantly underestimated by the Earth System Models. Here, we present results from a first attempt to modify the size distribution parameterizations in the GOCART-AFWA dust scheme of WRF - Chem, by including the large dust particles with diameters greater than 20 µm to describe the mineral dust cycle. The parameterization is based on Saharan dust observational datasets from FENNEC and SAMUM campaigns. We investigate the impact of the extended size distribution on the overall transported dust load and also the impact of particle settling considerations in deposition rates. The model results are compared with airborne dust measurements from AER-D campaign. In order to achieve the best agreement with the observations, an artificial force that counteracts gravity approximately by 80% for the large particles is needed, indicating the presence of one or more under-represented physical processes in the model.</p><p><strong>Acknowledgment:</strong> This research was supported by D-TECT (Grant Agreement 725698) funded by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme. </p>


2014 ◽  
Vol 14 (7) ◽  
pp. 3533-3544 ◽  
Author(s):  
F. Amato ◽  
A. Alastuey ◽  
J. de la Rosa ◽  
Y. Gonzalez Castanedo ◽  
A. M. Sánchez de la Campa ◽  
...  

Abstract. The impact of road dust emissions on PM10 and PM2.5 (atmospheric particulate matter with diameteer < 10 μm and 2.5 μm mass concentrations recorded from 2003 to 2010 at 11 locations (rural, urban and industrial) in southern Spain was estimated based on the chemical characterization of PM and the use of a constrained Positive Matrix Factorization, where the chemical profile of local road dust samples is used as a priori knowledge. Results indicate that road dust increased PM10 levels on average by 21–35% at traffic sites, 29–34% at urban background sites heavily affected by road traffic emissions, 17–22% at urban-industrial sites and 9–22% at rural sites. Road dust contributions to ambient PM levels show a marked seasonality with maxima in summer and minima in winter, likely due to the rainfall frequency. Decreasing concentration trends over the sampling years were found at some traffic and urban sites but in most cases the decreases were less significant than for vehicle exhaust emissions, while concentrations increased at industrial sites, probably due to local peculiarities. Concerning PM2.5, road dust contributions were lower than in PM10, as expected but still important (21–31%, 11–31%, 6–16% and 7% for traffic, urban background, urban-industrial and rural sites, respectively). In addition the three main sources of road dust (carbonaceous particles, brake wear and road wear/mineral) were identified and their contributions to road dust mass loadings estimated, supporting the idea that air quality managers should drive measures aimed at preventing the build-up of road dust particles on roads.


2011 ◽  
Vol 11 (16) ◽  
pp. 8231-8256 ◽  
Author(s):  
P. Formenti ◽  
L. Schütz ◽  
Y. Balkanski ◽  
K. Desboeufs ◽  
M. Ebert ◽  
...  

Abstract. This paper presents a review of recently acquired knowledge on the physico-chemical properties of mineral dust from Africa and Asia based on data presented and discussed during the Third International Dust Workshop, held in Leipzig (Germany) in September 2008. Various regional field experiments have been conducted in the last few years, mostly close to source regions or after short-range transport. Although significant progress has been made in characterising the regional variability of dust properties close to source regions, in particular the mineralogy of iron and the description of particle shape and mixing state, difficulties remain in estimating the range of variability of those properties within one given source region. As consequence, the impact of these parameters on aerosol properties like optical properties, solubility, hygroscopicity, etc. – determining the dust impact on climate – is only partly understood. Long-term datasets in remote regions such as the dust source regions remain a major desideratum. Future work should also focus on the evolution of dust properties during transport. In particular, the prediction of the mineral dust size distribution at emission and their evolution during transport should be considered as a high-priority. From the methodological point of view, a critical assessment and standardisation of the experimental and analytical techniques is highly recommended. Techniques to characterize the internal state of mixing of dust particles, particularly with organic material, should be further developed.


Sign in / Sign up

Export Citation Format

Share Document