scholarly journals LES study of the impact of moist thermals on the oxidative capacity of the atmosphere in southern West Africa

2017 ◽  
Author(s):  
Fabien Brosse ◽  
Maud Leriche ◽  
Céline Mari ◽  
Fleur Couvreux

Abstract. The hydroxyl radical (OH) is a highly reactive specie and plays a key role in the oxidative capacity of the atmosphere. The total OH reactivity, corresponding to the inverse of OH lifetime, may have a significant fraction non-attributable to commonly measured compounds. The turbulence-driven segregation of OH and its reactants can cause substantial modification of averaged reaction rates, and thus of the total OH reactivity, when compared to a perfectly mixed assumption. We study the impact of turbulent mixing on the OH reactivity with Large-Eddy Simulations from the Meso-NH model coupled on-line with a detailed chemistry mechanism in two contrasted regimes. Our findings show that the non-mixing of isoprene (resp. aldehydes) and OH leads to 30 % decrease (resp. 16 % increase) of the mean reaction rate at the top of the boundary layer and consequently to 9 % decrease (resp. 5 % increase) of the OH total reactivity in a biogenic (resp. anthropogenic) environment. Moreover, the total OH reactivity is highest inside thermals in both cases.

Author(s):  
Alexander P. Parobek ◽  
Patrick M. Chaffin ◽  
Marcy H. Towns

Reaction coordinate diagrams (RCDs) are chemical representations widely employed to visualize the thermodynamic and kinetic parameters associated with reactions. Previous research has demonstrated a host of misconceptions students adopt when interpreting the perceived information encoded in RCDs. This qualitative research study explores how general chemistry students interpret points and trends on a RCD and how these interpretations impact their inferences regarding the rate of a chemical reaction. Sixteen students participated in semi-structured interviews in which participants were asked to interpret the points and trends along provided RCDs and to compare relative reaction rates between RCDs. Findings derived from this study demonstrate the diversity of graphical reasoning adopted by students, the impact of students’ interpretations of the x-axis of a RCD on the graphical reasoning employed, and the influence of these ideas on inferences made about reaction rate. Informed by analytical frameworks grounded in the resources framework and the actor-oriented model of transfer, implications for instruction are provided with suggestions for how RCDs may be presented to assist students in recognizing the critical information encoded in these diagrams.


2018 ◽  
Vol 75 (10) ◽  
pp. 3365-3379 ◽  
Author(s):  
Gustavo C. Abade ◽  
Wojciech W. Grabowski ◽  
Hanna Pawlowska

This paper discusses the effects of cloud turbulence, turbulent entrainment, and entrained cloud condensation nuclei (CCN) activation on the evolution of the cloud droplet size spectrum. We simulate an ensemble of idealized turbulent cloud parcels that are subject to entrainment events modeled as a random process. Entrainment events, subsequent turbulent mixing inside the parcel, supersaturation fluctuations, and the resulting stochastic droplet activation and growth by condensation are simulated using a Monte Carlo scheme. Quantities characterizing the turbulence intensity, entrainment rate, CCN concentration, and the mean fraction of environmental air entrained in an event are all specified as independent external parameters. Cloud microphysics is described by applying Lagrangian particles, the so-called superdroplets. These are either unactivated CCN or cloud droplets that grow from activated CCN. The model accounts for the addition of environmental CCN into the cloud by entraining eddies at the cloud edge. Turbulent mixing of the entrained dry air with cloudy air is described using the classical linear relaxation to the mean model. We show that turbulence plays an important role in aiding entrained CCN to activate, and thus broadening the droplet size distribution. These findings are consistent with previous large-eddy simulations (LESs) that consider the impact of variable droplet growth histories on the droplet size spectra in small cumuli. The scheme developed in this work is ready to be used as a stochastic subgrid-scale scheme in LESs of natural clouds.


Author(s):  
Alessio Pappa ◽  
Laurent Bricteux ◽  
Pierre Bénard ◽  
Ward De Paepe

Abstract Considering the growing interest in Power-to-Fuel, i.e. production of H2 using electrolysis to store excess renewable electricity, combustion-based technologies still have a role to play in the future of power generation. Hydrogen combustion is well-known to lead to combustion instabilities. The high temperatures and reaction rates can potentially lead to flashback. In the past, combustion air humidification has proven effective to reduce temperatures and reaction rates. Therefore, humidification can open a path to stabilize hydrogen combustion. However, accurate data assessing the impact of humidification on the combustion is still missing for real mGT combustor geometries and operating conditions. This paper presents a comparison between pure methane and hydrogen enriched methane/air combustions, with and without air humidification, in a typical mGT combustion chamber (Turbec T100) using Large Eddy Simulations analysis. In a first step, the necessary minimal water dilution, to reach stable combustion with hydrogen, was assessed using a 1D approach. The one-dimensional unstretched laminar flame is computed for both pure methane (reference case) and hydrogen enriched cases. The results of this comparison show that the same level of flame speed as in the reference case can be reached by adding 10% (in mass fraction) of water. In a second step, high fidelity LES on the 3D geometry are performed to show that water dilution helped to lower the temperature and reaction rate of hydrogen at same levels as reference case, and thus prevents flashback, enabling the use of hydrogen blends in the mGT.


2019 ◽  
Vol 9 (5) ◽  
pp. 922 ◽  
Author(s):  
Ola Eriksson ◽  
Simon-Philippe Breton ◽  
Karl Nilsson ◽  
Stefan Ivanell

The impact of the Coriolis force on the long distance wake behind wind farms is investigated using Large Eddy Simulations (LES) combined with a Forced Boundary Layer (FBL) technique. When using the FBL technique any mean wind shear and turbulent fluctuations can be added with body forces. The wind shear can also include the mean wind veer due to the Coriolis force. The variation of the Coriolis force due to local deviations from the mean profile, e.g., from wakes, is not taken into account in the FBL. This can be corrected for with an extra source term in the equations, hereon defined as the Coriolis correction. For a row of 4 turbines it is shown that the inclusion of the wind veer turns the wake to the right, while including the Coriolis correction turns it to the left. When including both wind veer and Coriolis correction the impact of wind veer dominates. For an idealized farm to farm interaction case, two farms of 4 ∗ 4 turbines with 6 km in between, it can be seen that when including wind veer and the Coriolis correction a approximately 3% increase in the relative production for a full wake direction can be seen and only a slightly smaller increase can be seen when including only wind veer. The results indicate that FBL can be used for studies of long distance wakes without including a Coriolis correction but efforts need to be taken to use a wind shear with a correct mean wind veer.


2013 ◽  
Vol 70 (9) ◽  
pp. 2751-2767 ◽  
Author(s):  
Dorota Jarecka ◽  
Wojciech W. Grabowski ◽  
Hugh Morrison ◽  
Hanna Pawlowska

Abstract This paper presents an approach to locally predict homogeneity of the subgrid-scale turbulent mixing in large-eddy simulation of shallow clouds applying double-moment warm-rain microphysics. The homogeneity of subgrid-scale mixing refers to the partitioning of the cloud water evaporation due to parameterized entrainment between changes of the mean droplet radius and changes of the mean droplet concentration. Homogeneous and extremely inhomogeneous mixing represent two limits of possible scenarios, where the droplet concentration and the mean droplet radius remains unchanged during the microphysical adjustment, respectively. To predict the subgrid-scale mixing scenario, the double-moment microphysics scheme is merged with the approach to delay droplet evaporation resulting from entrainment. Details of the new scheme and its application in the Barbados Oceanographic and Meteorological Experiment (BOMEX) shallow convection case are discussed. The simulated homogeneity of mixing varies significantly inside small convective clouds, from close to homogeneous to close to extremely inhomogeneous. The mean mixing characteristics become more homogeneous with height, reflecting increases of the mean droplet size and the mean turbulence intensity, both favoring homogeneous mixing. Model results are consistent with microphysical effects of entrainment and mixing deduced from field observations. Mixing close to homogeneous is predicted in volumes with the highest liquid water content (LWC) and strongest updraft at a given height, whereas mixing in strongly diluted volumes is typically close to extremely inhomogeneous. The simulated homogeneity of mixing has a small impact on mean microphysical characteristics. This result agrees with the previous study applying prescribed mixing scenarios and can be explained by the high humidity of the clear air involved in the subgrid-scale mixing.


1981 ◽  
Vol 110 ◽  
pp. 411-432 ◽  
Author(s):  
N. Peters ◽  
W. Hocks ◽  
G. Mohiuddin

Closed-form expressions for the turbulent mean reaction rate and its covariance with the temperature are derived for premixed and non-premixed combustion. The limit of large activation energies is exploited for a chemical reaction rate that, by virtue of coupling functions, depends on the mixture fraction and a non-equilibrium progress variable only. The probability density function (p.d.f.) formulation with an assumed shape of the p.d.f. is used; a beta-function distribution is assumed for the progress variable. The mean reaction rate is expressed in terms of the mean and the variance of the temperature and, for non-premixed combustion, of the mixture fraction. The reaction kinetics are represented by the non-dimensional activation energy and the laminar flame velocity. For non-premixed systems the possibility of local extinction by flame stretch is considered.


2020 ◽  
Vol 642 ◽  
pp. A41
Author(s):  
Richard Longland ◽  
Nicolas de Séréville

Context. Monte Carlo methods can be used to evaluate the uncertainty of a reaction rate that arises from many uncertain nuclear inputs. However, until now no attempt has been made to find the effect of correlated energy uncertainties in input resonance parameters. Aims. Our goal is to investigate the impact of correlated resonance energy uncertainties on reaction rates. Methods. Using a combination of numerical and Monte Carlo variation of resonance energies, the effect of correlations are investigated. Five reactions are considered: two fictional, illustrative cases and three reactions whose rates are of current interest. Results. The effect of correlations in resonance energies depends on the specific reaction cross section and temperatures considered. When several resonances contribute equally to a reaction rate, and when they are located on either side of the Gamow peak, correlations between their energies dilute their effect on reaction rate uncertainties. If they are both located above or below the maximum of the Gamow peak, however, correlations between their resonance energies can increase the reaction rate uncertainties. This effect can be hard to predict for complex reactions with wide and narrow resonances contributing to the reaction rate.


2019 ◽  
Vol 16 (1) ◽  
pp. 29
Author(s):  
Nelda Ipkawati ◽  
Saktioto Saktioto ◽  
Saktioto Saktioto

Before producing hydrogen plasma low pressure in experiment, it is necessary to know the density equilibrium process through a simulation. Hydrogen species densities of non-thermal plasma at low pressure is simulated using chemical kinetik model by Runge Kutta method. This simulation carried out to determine the equilibrium process of densities and reaction rates of hydrogen species in achieving equilibrium conditions. The equation used time-dependent continuity equation and Arrhenius form. The hydrogen species consist of electrons, H, H2, H+ and H2+. The results of show that electron density, H, H2, H+ and H2+ are respectively 1020,23m-3, 1019,69m-3, 1019,91m-3, 1019,39m-3 and 1018,43m-3 during of 23-24 ns. These describe that the density of each species of hydrogen very fast to achieve equilibrium conditions, while the value of the reaction rate obtained can be concluded that the value of the largest reaction rate is the impact ionization process with a value of 9.86x1052m-3 s-1and the smallest one is dissociation process with a value of 1.22x10-5m-3 s-1.


2014 ◽  
Vol 71 (12) ◽  
pp. 4493-4499 ◽  
Author(s):  
Wojciech W. Grabowski

Abstract A simple methodology is proposed to extract impacts of cloud microphysics on macrophysical cloud-field properties in large-eddy simulations of shallow convection. These impacts are typically difficult to assess because of natural variability of the simulated cloud field. The idea is to use two sets of thermodynamic variables driven by different microphysical schemes or by a single scheme with different parameters as applied here. The first set is coupled to the dynamics as in the standard model, and the second set is applied diagnostically—that is, driven by the flow but without the feedback on the flow dynamics. Having the two schemes operating in the same flow pattern allows for extracting the impact with high confidence. For illustration, the method is applied to simulations of precipitating shallow convection applying a simple bulk representation of warm-rain processes. Because of natural variability, the traditional approach provides an uncertain estimate of the impact of cloud droplet concentration on the mean cloud-field rainfall even with an ensemble of simulations. In contrast, the impact is well constrained while applying the new methodology. The method can even detect minuscule changes of the mean cloud cover and liquid water path despite their large temporal fluctuations and different evolutions within the ensemble.


2018 ◽  
Vol 18 (9) ◽  
pp. 6601-6624 ◽  
Author(s):  
Fabien Brosse ◽  
Maud Leriche ◽  
Céline Mari ◽  
Fleur Couvreux

Abstract. The hydroxyl radical (OH) is a highly reactive species and plays a key role in the oxidative capacity of the atmosphere. We explore the potential impact of a convective boundary layer on reconciling the calculation–measurement differences for OH reactivity (the inverse of OH lifetime) attributable to the segregation of OH and its reactants by thermals and the resulting modification of averaged reaction rates. The large-eddy simulation version of the Meso-NH model is used, coupled on-line with a detailed chemistry mechanism to simulate two contrasted biogenic and urban chemical regimes. In both environments, the top of the boundary layer is the region with the highest calculated segregation intensities but with the opposite sign. In the biogenic environment, the inhomogeneous mixing of isoprene and OH leads to a maximum decrease of 30 % of the mean reaction rate in this zone. In the anthropogenic case, the effective rate constant for OH reacting with aldehydes is 16 % higher than the averaged value. OH reactivity is always higher by 15 to 40 % inside thermals in comparison to their surroundings as a function of the chemical environment and time of the day. Since thermals occupy a small fraction of the simulated domain, the impact of turbulent motions on domain-averaged total OH reactivity reaches a maximum decrease of 9 % for the biogenic case and a maximum increase of 5 % for the anthropogenic case. Accounting for the segregation of air masses by turbulent motions in regional and global models may increase OH reactivity in urban environments but lower OH reactivity in biogenic environments. In both cases, segregation alone is insufficient for resolving the underestimation between observed and modeled OH reactivity.


Sign in / Sign up

Export Citation Format

Share Document