scholarly journals Cloud impacts on photochemistry: a new climatology of photolysis rates from the Atmospheric Tomography mission

2018 ◽  
Author(s):  
Samuel R. Hall ◽  
Kirk Ullmann ◽  
Michael J. Prather ◽  
Clare M. Flynn ◽  
Lee T. Murray ◽  
...  

Abstract. Measurements from actinic flux spectroradiometers on board the NASA DC-8 during the Atmospheric Tomography (ATom) mission provide an extensive set of statistics on how clouds alter photolysis rates (J-values) throughout the remote Pacific and Atlantic Ocean basins. ATom made profiling circumnavigations of the troposphere over four seasons during 2016–2018. J-values are a primary chemical control over tropospheric ozone and methane abundances and their greenhouse effects. Clouds have been recognized for more than three decades as being an important factor in tropospheric chemistry. The ATom climatology of J-values is a unique test of how the chemistry models treat clouds. This work focuses on measurements over the Pacific during the first deployment (ATom-1) in August 2016. Nine global chemistry–climate or –transport models provide J-values for the domains measured in ATom-1. We compare mean profiles over a range of cloudy and clear conditions; but, more importantly, we build a statistical picture of the impact of clouds on J-values through the distribution of the ratio of J-cloudy to J-clear. In detail, the models show largely disparate patterns. When compared with measurements, there is some limited, broad agreement. Models here have resolutions of 50–200 km and thus reduce the occurrence of clear sky when averaging over grid cells. In situ measurements also average the scattered sunlight, but only out to scales of 10 s of km. A primary uncertainty remains in the role of clouds in chemistry, in particular, how models average over cloud fields, and how such averages can simulate measurements.

2018 ◽  
Vol 18 (22) ◽  
pp. 16809-16828 ◽  
Author(s):  
Samuel R. Hall ◽  
Kirk Ullmann ◽  
Michael J. Prather ◽  
Clare M. Flynn ◽  
Lee T. Murray ◽  
...  

Abstract. Measurements from actinic flux spectroradiometers on board the NASA DC-8 during the Atmospheric Tomography (ATom) mission provide an extensive set of statistics on how clouds alter photolysis rates (J values) throughout the remote Pacific and Atlantic Ocean basins. J values control tropospheric ozone and methane abundances, and thus clouds have been included for more than three decades in tropospheric chemistry modeling. ATom made four profiling circumnavigations of the troposphere capturing each of the seasons during 2016–2018. This work examines J values from the Pacific Ocean flights of the first deployment, but publishes the complete Atom-1 data set (29 July to 23 August 2016). We compare the observed J values (every 3 s along flight track) with those calculated by nine global chemistry–climate/transport models (globally gridded, hourly, for a mid-August day). To compare these disparate data sets, we build a commensurate statistical picture of the impact of clouds on J values using the ratio of J-cloudy (standard, sometimes cloudy conditions) to J-clear (artificially cleared of clouds). The range of modeled cloud effects is inconsistently large but they fall into two distinct classes: (1) models with large cloud effects showing mostly enhanced J values aloft and or diminished at the surface and (2) models with small effects having nearly clear-sky J values much of the time. The ATom-1 measurements generally favor large cloud effects but are not precise or robust enough to point out the best cloud-modeling approach. The models here have resolutions of 50–200 km and thus reduce the occurrence of clear sky when averaging over grid cells. In situ measurements also average scattered sunlight over a mixed cloud field, but only out to scales of tens of kilometers. A primary uncertainty remains in the role of clouds in chemistry, in particular, how models average over cloud fields, and how such averages can simulate measurements.


2014 ◽  
Vol 14 (2) ◽  
pp. 675-690 ◽  
Author(s):  
Y. Choi

Abstract. We analyze the simulation results from a CMAQ model and GOME-2 NO2 retrievals over the United States for August 2009 to estimate the model-simulated biases of NOx concentrations over six geological regions (Pacific Coast = PC, Rocky Mountains = RM, Lower Middle = LM, Upper Middle = UM, Southeast = SE, Northeast = NE). By comparing GOME-2 NO2 columns to corresponding CMAQ NO2 columns, we produced satellite-adjusted NOx emission ("GOME2009") and compared baseline emission ("BASE2009") CMAQ simulations with GOME2009 CMAQ runs. We found that the latter exhibited decreases of −5.6%, −12.3%, −21.3%, and −15.9 % over the PC, RM, LM, and SE regions, respectively, and increases of +2.3% and +10.0% over the UM and NE regions. In addition, we found that changes in NOx emissions generally mitigate discrepancies between the surface NOx concentrations of baseline CMAQ and those of AQS at EPA AQS stations (mean bias of +19.8% to −13.7% over PC, −13.8% to −36.7% over RM, +149.7% to −1.8% over LM, +22.5% to −7.8% over UM, +31.3% to −7.9% over SE, and +11.6% to +0.7% over NE). The relatively high simulated NOx biases from baseline CMAQ over LM (+149.7%) are likely the results of over-predictions of simulated NOx emissions, which could shed light on those from global/regional Chemical Transport Models. We also perform more detailed investigations on surface NOx and O3 concentrations in two urban and outflow areas, PC (e.g., Los Angeles, South Pasadena, Anaheim, La Habra and Riverside) and LM (e.g., Houston, Beaumont and Sulphur). From two case studies, we found that the GOME2009 emissions decreased surface NOx concentrations significantly in the urban areas of PC (up to 30 ppbv) and in those of LM (up to 10 ppbv) during the daytime and that simulated NOx concentrations from CMAQ with GOME2009 compare well to those of in-situ AQS observations. A significant reduction in NOx concentrations resulted in a comparable increase in surface O3 concentrations in the urban areas of PC (up to 30 ppbv) and the resulting simulated O3 concentrations compare well with in-situ surface O3 observations over South Pasadena, Anaheim, and Riverside. Over Houston, Beaumont, and Sulphur, large reductions in NOx emissions from CMAQ with GOME2009 coincides with large reduced concentrations of simulated NOx. These concentrations are similar to those of the EPA AQS NOx observations. However, the resulting simulated increase in surface O3 at the urban stations in Houston and Sulphur exacerbated preexisting high O3 over-predictions of the baseline CMAQ. This study implies that simulated low O3 biases in the urban areas of PC are likely caused by simulated high NOx biases, but high O3 biases in the urban areas of LM cannot be explained by simulated high NOx biases over the region. This study also suggests that both in-situ surface NOx and O3 observations should be used simultaneously to resolve issues pertaining to simulated high/low O3 bias and that remote-sensing data could be used as a constraint for bottom-up emissions. In addition, we also found that daytime O3 reductions over the outflow regions of LM following large reductions in NOx emissions in the urban areas are significantly larger than they are over outflow regions of PC. These findings provide policymakers in the two regions with information critical to establishing strategies for mitigating air pollution.


2013 ◽  
Vol 13 (8) ◽  
pp. 21159-21201 ◽  
Author(s):  
Y. Choi

Abstract. We analyze the simulation results from a CMAQ model and GOME-2 NO2 retrievals over the United States for August~2009 to estimate the model-simulated biases of NOx concentrations over six geological regions (Pacific Coast = PC, Rocky Mountains = RM, Lower Middle = LM, Upper Middle = UM, Southeast = SE, Northeast = NE). By comparing GOME-2 NO2 columns to corresponding CMAQ NO2 columns, we produced satellite-adjusted NOx emission ("GOME2009") and compared baseline emission ("BASE2009") CMAQ simulations with GOME2009 CMAQ runs. We found that the latter exhibited decreases of −5.6%, −12.3%, −21.3%, and −15.9% over the PC, RM, LM, and SE regions, respectively, and increases of +2.3% and +10.0% over the UM and NE regions. In addition, we found that changes in NOx emissions generally mitigate discrepancies between the surface NOx concentrations of baseline CMAQ and those of AQS at EPA AQS stations (mean bias of +19.8% to −13.7% over PC, −13.8% to −36.7% over RM, +149.7% to −1.8% over LM, +22.5% to −7.8% over UM, +31.3% to −7.9% over SE, and +11.6% to +0.7% over NE). The relatively high simulated NOx biases from baseline CMAQ over LM (+149.7%) are likely the results of over-predictions of simulated NOx emissions, which could shed light on those from global/regional Chemical Transport Models. We also perform more detailed investigations on surface NOx and O3 concentrations in two urban and outflow areas, PC (e.g., Los Angeles, South Pasadena, Anaheim, La Habra and Riverside) and LM (e.g., Houston, Beaumont and Sulphur). From two case studies, we found that the GOME2009 emissions decreased surface NOx concentrations significantly in the urban areas of PC (up to 30 ppbv) and in those of LM (up to 10 ppbv) during the daytime and that simulated NOx concentrations from CMAQ with GOME2009 compare well to those of in-situ AQS observations. A significant reduction in NOx concentrations resulted in a comparable increase in surface O3 concentrations in the urban areas of PC (up to 30 ppbv) and the resulting simulated O3 concentrations compare well with in-situ surface O3 observations over South Pasadena, Anaheim, and Riverside. Over Houston, Beaumont, and Sulphur, large reductions in NOx emissions from CMAQ with GOME2009 coincides with large reduced concentrations of simulated NOx. These concentrations are similar to those of the EPA AQS NOx observations. However, the resulting simulated increase in surface O3 at the urban stations in Houston and Sulphur exacerbated preexisting high O3 over-predictions of the baseline CMAQ. This study implies that simulated low O3 biases in the urban areas of PC are likely caused by simulated high NOx biases, but high O3 biases in the urban areas of LM cannot be explained by simulated high NOx biases over the region. This study also suggests that both in-situ surface NOx and O3 observations should be used simultaneously to resolve issues pertaining to simulated high/low O3 bias and that remote sensing data could be used as a constraint for bottom-up emissions. In addition, we also found that daytime O3 reductions over the outflow regions of LM following large reductions in NOx emissions in the urban areas are significantly larger than they are over outflow regions of PC. These findings provide policymakers in the two regions with information critical to establishing strategies for mitigating air pollution.


Author(s):  
Carlos Canelo-Aybar ◽  
Alvaro Taype-Rondan ◽  
Jessica Hanae Zafra-Tanaka ◽  
David Rigau ◽  
Axel Graewingholt ◽  
...  

Abstract Objective To evaluate the impact of preoperative MRI in the management of Ductal carcinoma in situ (DCIS). Methods We searched the PubMed, EMBASE and Cochrane Library databases to identify randomised clinical trials (RCTs) or cohort studies assessing the impact of preoperative breast MRI in surgical outcomes, treatment change or loco-regional recurrence. We provided pooled estimates for odds ratios (OR), relative risks (RR) and proportions and assessed the certainty of the evidence using the GRADE approach. Results We included 3 RCTs and 23 observational cohorts, corresponding to 20,415 patients. For initial breast-conserving surgery (BCS), the RCTs showed that MRI may result in little to no difference (RR 0.95, 95% CI 0.90 to 1.00) (low certainty); observational studies showed that MRI may have no difference in the odds of re-operation after BCS (OR 0.96; 95% CI 0.36 to 2.61) (low certainty); and uncertain evidence from RCTs suggests little to no difference with respect to total mastectomy rate (RR 0.91; 95% CI 0.65 to 1.27) (very low certainty). We also found that MRI may change the initial treatment plans in 17% (95% CI 12 to 24%) of cases, but with little to no effect on locoregional recurrence (aHR = 1.18; 95% CI 0.79 to 1.76) (very low certainty). Conclusion We found evidence of low to very low certainty which may suggest there is no improvement of surgical outcomes with pre-operative MRI assessment of women with DCIS lesions. There is a need for large rigorously conducted RCTs to evaluate the role of preoperative MRI in this population. Key Points • Evidence of low to very low certainty may suggest there is no improvement in surgical outcomes with pre-operative MRI. • There is a need for large rigorously conducted RCTs evaluating the role of preoperative MRI to improve treatment planning for DCIS.


2011 ◽  
Vol 11 (4) ◽  
pp. 1711-1727 ◽  
Author(s):  
E. Real ◽  
K. Sartelet

Abstract. This paper evaluates the impact of photolysis rate calculation on simulated European air composition and air quality. In particular, the impact of the cloud parametrisation and the impact of aerosols on photolysis rates are analysed. Photolysis rates are simulated using the Fast-JX photolysis scheme and gas and aerosol concentrations over Europe are simulated with the regional chemistry-transport model Polair3D of the Polyphemus platform. The photolysis scheme is first used to update the clear-sky tabulation of photolysis rates used in the previous Polair3D version. Important differences in photolysis rates are simulated, mainly due to updated cross-sections and quantum yields in the Fast-JX scheme. In the previous Polair3D version, clouds were taken into account by multiplying the clear-sky photolysis rates by a correction factor. In the new version, clouds are taken into account more accurately by simulating them directly in the photolysis scheme. Differences in photolysis rates inside clouds can be large but outside clouds, and especially at the ground, differences are small. To take into account the impact of aerosols on photolysis rates, Polair3D and Fast-JX are coupled. Photolysis rates are updated every hour. Large impact on photolysis rates is observed at the ground, decreasing with altitude. The aerosol specie that impact the most photolysis rates is dust especially in south Europe. Strong impact is also observed over anthropogenic emission regions (Paris, The Po and the Ruhr Valley) where mainly nitrate and sulphate reduce the incoming radiation. Differences in photolysis rates lead to changes in gas concentrations, with the largest impact simulated on OH and NO concentrations. At the ground, monthly mean concentrations of both species are reduced over Europe by around 10 to 14% and their tropospheric burden by around 10%. The decrease in OH leads to an increase of the life-time of several species such as VOC. NO2 concentrations are not strongly impacted and O3 concentrations are mostly reduced at the ground (−3%). O3 peaks are systematically decreased because of the NO2 photolysis rate coefficient decrease. Not only gas are impacted but also secondary aerosols, due to changes in gas precursors concentrations. However changes in aerosol species concentrations often compensate each other resulting in a low impact on PM10 and PM2.5 concentrations (lower than 2%). The changes in gas concentrations at the ground induced by the modification of photolysis rates (by aerosols and clouds) are compared to changes induced by 29 different model parametrisations in Roustan et al. (2010). Among the 31 model parametrisations, "including aerosols on photolysis rates calculation" has the strongest impact on OH concentrations and on O3 bias in July. In terms of air quality, ground concentrations (NO2, O3, PM10) are compared with measurements. Changes arising from cloud parametrisation are small. Simulation performances are often slightly better when including aerosol in photolysis rates calculation. The systematic O3 peak reduction leads to large differences in the exceedances of the European O3 standard as calculated by the model, in better agreement with measurements. The number of exceedances of the information and the alert threshold is divided by 2 when the aerosol impact on photochemistry is simulated. This shows the importance of taking into account aerosols impact on photolysis rates in air quality studies.


Parasitology ◽  
2017 ◽  
Vol 145 (8) ◽  
pp. 1095-1104 ◽  
Author(s):  
A. J. O’ Reilly ◽  
C. Laide ◽  
A Maloy ◽  
S. Hutton ◽  
B. Bookelaar ◽  
...  

AbstractThe Pacific oyster Crassostrea gigas contributes significantly to global aquaculture; however, C. gigas culture has been affected by ostreid herpesvirus-1 (OsHV-1) and variants. The dynamics of how the virus maintains itself at culture sites is unclear and the role of carriers, reservoirs or hosts is unknown. Both wild and cultured mussels Mytilus spp. (Mytilus edulis, Mytilus galloprovincialis and hybrids) are commonly found at C. gigas culture sites. The objective of this study was to investigate if Mytilus spp. can harbour the virus and if viral transmission can occur between mussels and oysters. Mytilus spp. living at oyster trestles, 400–500 m higher up the shore from the trestles and up to 26 km at non-culture sites were screened for OsHV-1 and variants by all the World Organization for Animal Health (OIE) recommended diagnostic methods including polymerase chain reaction (PCR), quantitative PCR (qPCR), histology, in situ hybridization and confirmation using direct sequencing. The particular primers that target OsHV-1 and variants, including OsHV-1 microVar (μVar), were used in the PCR and qPCR. OsHV-1 μVar was detected in wild Mytilus spp. at C. gigas culture sites and more significantly the virus was detected in mussels at non-culture sites. Cohabitation of exposed wild mussels and naïve C. gigas resulted in viral transmission after 14 days, under an elevated temperature regime. These results indicate that mussels can harbour OsHV-1 μVar; however, the impact of OsHV-1 μVar on Mytilus spp. requires further investigation.


2020 ◽  
Author(s):  
Eric C. Apel

<p>Reactive halogens have wide-ranging consequences on tropospheric chemistry including ozone destruction, HOx and NOx partitioning, oxidization of volatile organic compounds (VOCs) and initiation of new particle formation. Of particular note and importance, the tropospheric Ox loss due to halogens is estimated to be between 10-20% globally, and up to 50% in some local marine environments. In this work, we include a state-of-the-art coupled halogen and VOCs chemical mechanism into the CAM-Chem global model. Complementing the model development and providing the opportunity to test the model are recent results from the NASA Atmospheric Tomography (ATom) experiment.  ATom was conducted with a heavily instrumented NASA DC-8 aircraft over the course of two and a half years, transecting the lengths of the Pacific and Atlantic Oceans during four seasons, constantly profiling from the surface (200 m) to the upper troposphere/lower stratosphere (12000 m). The ATom payload included instruments that measured both inorganic halogens and organic halogen-containing very short-lived substances (VSLS), as well as those that measured additional volatile organic compounds (VOCs), including hydrocarbons and oxygenated VOCs (OVOCs), both of which react with halogens. Modeled BrO is sensitive to the inclusion of reactions between Br and OVOCs, particularly the aldehydes, which rapidly convert Br to HBr, a far less reactive form of Br<sub>y</sub>. These reactions can have large implications in the remote troposphere where the ATom measurements have revealed significant emissions and chemical production of low molecular weight aldehydes over the remote marine environment. A version of CAM-chem, updated to include aldehyde emissions from the ocean to close the gap between models and measurements, is used in these analyses. Comparisons between measured and modeled halogen containing species, both organic and inorganic, is presented along with a summary of the implications of our findings on the overall budgets of tropospheric halogens and ozone.</p>


2005 ◽  
Vol 5 (6) ◽  
pp. 12373-12401
Author(s):  
G. Berthet ◽  
N. Huret ◽  
F. Lefèvre ◽  
G. Moreau ◽  
C. Robert ◽  
...  

Abstract. In this paper we study the impact of the modelling of N2O on the simulation of NO2 and HNO3 by comparing in situ vertical profiles measured at mid-latitudes with the results of the Reprobus 3-D CTM (Three-dimensional Chemical Transport Model) computed with the kinetic parameters from the JPL recommendation in 2002. The analysis of the measured in situ profile of N2O shows particular features indicating different air mass origins. The measured N2O, NO2 and HNO3 profiles are not satisfyingly reproduced by the CTM when computed using the current 6-hourly ECMWF operational analysis. Improving the simulation of N2O transport allows us to calculate quantities of NO2 and HNO3 in reasonable agreement with observations. This is achieved using 3-hourly winds obtained from ECMWF forecasts. The best agreement is obtained by constraining a one-dimensional version of the model with the observed N2O. This study shows that modelling the NOy partitioning with better accuracy relies at least on a correct simulation of N2O and thus of total NOy.


Author(s):  
Nicholas Evan Sarantakes

The Pacific world of the early twentieth century, dominated by Europe, Japan, and the United States, is gone. The region’s control by outsiders has been succeeded by increasing economic importance, broader political negotiation, and wider cultural acceptance. Whether considering transoceanic communication, popular understanding of air power, the limits to training a continental Asian army, local uses of food, the role of “special” military units, the understanding of nuclear weapons, or the impact of American military occupation, these essays shed light on the volatile Pacific as a whole. The chapters in War in the American Pacific and East Asia, 1941–1972illustrate how the mid-twentieth-century world set the stage for the Pacific of our own era, offering important waypoints for explaining the transition to the twenty-first century.


2015 ◽  
Vol 32 (1) ◽  
pp. 131-143 ◽  
Author(s):  
David Halpern ◽  
Dimitris Menemenlis ◽  
Xiaochun Wang

AbstractThe impact of data assimilation on the transports of eastward-flowing Equatorial Undercurrent (EUC) and North Equatorial Countercurrent (NECC) in the Pacific Ocean from 145°E to 95°W during 2004–05 and 2009–11 was assessed. Two Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2), solutions were analyzed: one with data assimilation and one without. Assimilated data included satellite observations of sea surface temperature and ocean surface topography, in which the sampling patterns were approximately uniform over the 5 years, and in situ measurements of subsurface salinity and temperature profiles, in which the sampling patterns varied considerably in space and time throughout the 5 years. Velocity measurements were not assimilated. The impact of data assimilation was considered significant when the difference between the transports computed with and without data assimilation was greater than 5.5 × 106 m3 s−1 (or 5.5 Sv; 1 Sv ≡ 106 m3 s−1) for the EUC and greater than 5.0 Sv for the NECC. In addition, the difference of annual-mean transports computed from 3-day-averaged data was statistically significant at the 95% level. The impact of data assimilation ranged from no impact to very substantial impact when data assimilation increased the EUC transport and decreased the NECC transport. The study’s EUC results had some correspondence with other studies and no simple agreement or disagreement pattern emerged among all studies of the impact of data assimilation. No comparable study of the impact of data assimilation on the NECC has been made.


Sign in / Sign up

Export Citation Format

Share Document