scholarly journals Open fires in Greenland: an unusual event and its impact on the albedo of the Greenland Ice Sheet

2018 ◽  
Author(s):  
Nikolaos Evangeliou ◽  
Arve Kylling ◽  
Sabine Eckhardt ◽  
Viktor Myroniuk ◽  
Kerstin Stebel ◽  
...  

Abstract. Highly unusual open fires burned in Western Greenland between 31 July and 21 August 2017, after a period of warm, dry and sunny weather. The fires burned on peat lands that became vulnerable to fires by permafrost thawing. We used several satellite data sets to estimate that the total area burned was about 2345 hectares. Based on assumptions of typical burn depths and BC emission factors for peat fires, we estimate that the fires consumed a fuel amount of about 117 kt C and produced BC emissions of about 23.5 t. We used the Lagrangian particle dispersion model to simulate the atmospheric BC transport and deposition. We find that the smoke plumes were often pushed towards the Greenland Ice Sheet by westerly winds and thus a large fraction of the BC emissions (7 t or 30 %) was deposited on snow or ice covered surfaces. The calculated BC deposition was small compared to BC deposition from global sources, but not entirely negligible. Analysis of aerosol optical depth data from three sites in Western Greenland in August 2017 showed strong influence of forest fire plumes from Canada, but little impact of the Greenland fires. Nevertheless, CALIOP lidar data showed that our model captured very effectively the presence and structure of the plume from the Greenland fires. The albedo changes and instantaneous surface radiative forcing in Greenland due to the fire BC emissions were estimated with the SNICAR model and the uvspec model from the libRadtran radiative transfer software package. We estimate that the maximum albedo change due to the BC deposition was about 0.006, too small to be measured by satellites or other means. The average instantaneous surface radiative forcing over Greenland at noon on 31 August was 0.03 W m−2, with locally occurring maximum values of 0.63 W m−2. The average value is at least an order of magnitude smaller than the radiative forcing due to BC from other sources. Overall, the fires burning in Greenland in summer of 2017 had little impact on BC deposition on the Greenland Ice Sheet, causing almost negligible extra radiative forcing. This was due to the – in a global context – still rather small size of the fires. However, the very large fraction of the BC emissions deposited on the Greenland Ice Sheet makes these fires very efficient climate forcers on a per unit emission basis. If the expected further warming of Greenland produces much larger fires in the future, this could indeed cause substantial albedo changes and thus lead to accelerated melting of the Greenland Ice Sheet. The fires burning in 2017 may be a harbinger of such future changes.

2019 ◽  
Vol 19 (2) ◽  
pp. 1393-1411 ◽  
Author(s):  
Nikolaos Evangeliou ◽  
Arve Kylling ◽  
Sabine Eckhardt ◽  
Viktor Myroniuk ◽  
Kerstin Stebel ◽  
...  

Abstract. Highly unusual open fires burned in western Greenland between 31 July and 21 August 2017, after a period of warm, dry and sunny weather. The fires burned on peatlands that became vulnerable to fires by permafrost thawing. We used several satellite data sets to estimate that the total area burned was about 2345 ha. Based on assumptions of typical burn depths and emission factors for peat fires, we estimate that the fires consumed a fuel amount of about 117 kt C and emitted about 23.5 t of black carbon (BC) and 731 t of organic carbon (OC), including 141 t of brown carbon (BrC). We used a Lagrangian particle dispersion model to simulate the atmospheric transport and deposition of these species. We find that the smoke plumes were often pushed towards the Greenland ice sheet by westerly winds, and thus a large fraction of the emissions (30 %) was deposited on snow- or ice-covered surfaces. The calculated deposition was small compared to the deposition from global sources, but not entirely negligible. Analysis of aerosol optical depth data from three sites in western Greenland in August 2017 showed strong influence of forest fire plumes from Canada, but little impact of the Greenland fires. Nevertheless, CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar data showed that our model captured the presence and structure of the plume from the Greenland fires. The albedo changes and instantaneous surface radiative forcing in Greenland due to the fire emissions were estimated with the SNICAR model and the uvspec model from the libRadtran radiative transfer software package. We estimate that the maximum albedo change due to the BC and BrC deposition was about 0.007, too small to be measured. The average instantaneous surface radiative forcing over Greenland at noon on 31 August was 0.03–0.04 W m−2, with locally occurring maxima of 0.63–0.77 W m−2 (depending on the studied scenario). The average value is up to an order of magnitude smaller than the radiative forcing from other sources. Overall, the fires burning in Greenland in the summer of 2017 had little impact on the Greenland ice sheet, causing a small extra radiative forcing. This was due to the – in a global context – still rather small size of the fires. However, the very large fraction of the emissions deposited on the Greenland ice sheet from these fires could contribute to accelerated melting of the Greenland ice sheet if these fires become several orders of magnitude larger under future climate.


2021 ◽  
Vol 13 (2) ◽  
pp. 227
Author(s):  
Arthur Elmes ◽  
Charlotte Levy ◽  
Angela Erb ◽  
Dorothy K. Hall ◽  
Ted A. Scambos ◽  
...  

In mid-June 2019, the Greenland ice sheet (GrIS) experienced an extreme early-season melt event. This, coupled with an earlier-than-average melt onset and low prior winter snowfall over western Greenland, led to a rapid decrease in surface albedo and greater solar energy absorption over the melt season. The 2019 melt season resulted in significantly more melt than other recent years, even compared to exceptional melt years previously identified in the moderate-resolution imaging spectroradiometer (MODIS) record. The increased solar radiation absorbance in 2019 warmed the surface and increased the rate of meltwater production. We use two decades of satellite-derived albedo from the MODIS MCD43 record to show a significant and extended decrease in albedo in Greenland during 2019. This decrease, early in the melt season and continuing during peak summer insolation, caused increased radiative forcing of the ice sheet of 2.33 Wm−2 for 2019. Radiative forcing is strongly influenced by the dramatic seasonal differences in surface albedo experienced by any location experiencing persistent and seasonal snow-cover. We also illustrate the utility of the newly developed Landsat-8 albedo product for better capturing the detailed spatial heterogeneity of the landscape, leading to a more refined representation of the surface energy budget. While the MCD43 data accurately capture the albedo for a given 500 m pixel, the higher spatial resolution 30 m Landsat-8 albedos more fully represent the detailed landscape variations.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ching-Yao Lai ◽  
Laura A. Stevens ◽  
Danielle L. Chase ◽  
Timothy T. Creyts ◽  
Mark D. Behn ◽  
...  

AbstractSurface meltwater reaching the base of the Greenland Ice Sheet transits through drainage networks, modulating the flow of the ice sheet. Dye and gas-tracing studies conducted in the western margin sector of the ice sheet have directly observed drainage efficiency to evolve seasonally along the drainage pathway. However, the local evolution of drainage systems further inland, where ice thicknesses exceed 1000 m, remains largely unknown. Here, we infer drainage system transmissivity based on surface uplift relaxation following rapid lake drainage events. Combining field observations of five lake drainage events with a mathematical model and laboratory experiments, we show that the surface uplift decreases exponentially with time, as the water in the blister formed beneath the drained lake permeates through the subglacial drainage system. This deflation obeys a universal relaxation law with a timescale that reveals hydraulic transmissivity and indicates a two-order-of-magnitude increase in subglacial transmissivity (from 0.8 ± 0.3 $${\rm{m}}{{\rm{m}}}^{3}$$ m m 3 to 215 ± 90.2 $${\rm{m}}{{\rm{m}}}^{3}$$ m m 3 ) as the melt season progresses, suggesting significant changes in basal hydrology beneath the lakes driven by seasonal meltwater input.


2002 ◽  
Vol 48 (161) ◽  
pp. 192-198 ◽  
Author(s):  
Peter G. Knight ◽  
Richard I. Waller ◽  
Carrie J. Patterson ◽  
Alison P. Jones ◽  
Zoe P. Robinson

AbstractSediment production at a terrestrial section of the ice-sheet margin in West Greenland is dominated by debris released through the basal ice layer. The debris flux through the basal ice at the margin is estimated to be 12–45 m3 m−1 a−1. This is three orders of magnitude higher than that previously reported for East Antarctica, an order of magnitude higher than sites reported from in Norway, Iceland and Switzerland, but an order of magnitude lower than values previously reported from tidewater glaciers in Alaska and other high-rate environments such as surging glaciers. At our site, only negligible amounts of debris are released through englacial, supraglacial or subglacial sediment transfer. Glaciofluvial sediment production is highly localized, and long sections of the ice-sheet margin receive no sediment from glaciofluvial sources. These findings differ from those of studies at more temperate glacial settings where glaciofluvial routes are dominant and basal ice contributes only a minor percentage of the debris released at the margin. These data on debris flux through the terrestrial margin of an outlet glacier contribute to our limited knowledge of debris production from the Greenland ice sheet.


2014 ◽  
Vol 7 (4) ◽  
pp. 4353-4381
Author(s):  
M. Bügelmayer ◽  
D. M. Roche ◽  
H. Renssen

Abstract. Recent modelling studies have indicated that icebergs alter the ocean's state, the thickness of sea ice and the prevailing atmospheric conditions, in short play an active role in the climate system. The icebergs' impact is due to their slowly released melt water which freshens and cools the ocean. The spatial distribution of the icebergs and thus their melt water depends on the forces (atmospheric and oceanic) acting on them as well as on the icebergs' size. The studies conducted so far have in common that the icebergs were moved by reconstructed or modelled forcing fields and that the initial size distribution of the icebergs was prescribed according to present day observations. To address these shortcomings, we used the climate model iLOVECLIM that includes actively coupled ice-sheet and iceberg modules, to conduct 15 sensitivity experiments to analyse (1) the impact of the forcing fields (atmospheric vs. oceanic) on the icebergs' distribution and melt flux, and (2) the effect of the used initial iceberg size on the resulting Northern Hemisphere climate and ice sheet under different climate conditions (pre-industrial, strong/weak radiative forcing). Our results show that, under equilibrated pre-industrial conditions, the oceanic currents cause the bergs to stay close to the Greenland and North American coast, whereas the atmospheric forcing quickly distributes them further away from their calving site. These different characteristics strongly affect the lifetime of icebergs, since the wind-driven icebergs melt up to two years faster as they are quickly distributed into the relatively warm North Atlantic waters. Moreover, we find that local variations in the spatial distribution due to different iceberg sizes do not result in different climate states and Greenland ice sheet volume, independent of the prevailing climate conditions (pre-industrial, warming or cooling climate). Therefore, we conclude that local differences in the distribution of their melt flux do not alter the prevailing Northern Hemisphere climate and ice sheet under equilibrated conditions und constant supply of icebergs. Furthermore, our results suggest that the applied radiative forcing scenarios have a stronger impact on climate than the used initial size distribution of the icebergs.


2019 ◽  
Vol 16 (16) ◽  
pp. 3247-3266 ◽  
Author(s):  
Erkan Ibraim ◽  
Benjamin Wolf ◽  
Eliza Harris ◽  
Rainer Gasche ◽  
Jing Wei ◽  
...  

Abstract. Nitrous oxide (N2O) is the primary atmospheric constituent involved in stratospheric ozone depletion and contributes strongly to changes in the climate system through a positive radiative forcing mechanism. The atmospheric abundance of N2O has increased from 270 ppb (parts per billion, 10−9 mole mole−1) during the pre-industrial era to approx. 330 ppb in 2018. Even though it is well known that microbial processes in agricultural and natural soils are the major N2O source, the contribution of specific soil processes is still uncertain. The relative abundance of N2O isotopocules (14N14N16N, 14N15N16O, 15N14N16O, and 14N14N18O) carries process-specific information and thus can be used to trace production and consumption pathways. While isotope ratio mass spectroscopy (IRMS) was traditionally used for high-precision measurement of the isotopic composition of N2O, quantum cascade laser absorption spectroscopy (QCLAS) has been put forward as a complementary technique with the potential for on-site analysis. In recent years, pre-concentration combined with QCLAS has been presented as a technique to resolve subtle changes in ambient N2O isotopic composition. From the end of May until the beginning of August 2016, we investigated N2O emissions from an intensively managed grassland at the study site Fendt in southern Germany. In total, 612 measurements of ambient N2O were taken by combining pre-concentration with QCLAS analyses, yielding δ15Nα, δ15Nβ, δ18O, and N2O concentration with a temporal resolution of approximately 1 h and precisions of 0.46 ‰, 0.36 ‰, 0.59 ‰, and 1.24 ppb, respectively. Soil δ15N-NO3- values and concentrations of NO3- and NH4+ were measured to further constrain possible N2O-emitting source processes. Furthermore, the concentration footprint area of measured N2O was determined with a Lagrangian particle dispersion model (FLEXPART-COSMO) using local wind and turbulence observations. These simulations indicated that night-time concentration observations were largely sensitive to local fluxes. While bacterial denitrification and nitrifier denitrification were identified as the primary N2O-emitting processes, N2O reduction to N2 largely dictated the isotopic composition of measured N2O. Fungal denitrification and nitrification-derived N2O accounted for 34 %–42 % of total N2O emissions and had a clear effect on the measured isotopic source signatures. This study presents the suitability of on-site N2O isotopocule analysis for disentangling source and sink processes in situ and found that at the Fendt site bacterial denitrification or nitrifier denitrification is the major source for N2O, while N2O reduction acted as a major sink for soil-produced N2O.


2019 ◽  
Vol 19 (11) ◽  
pp. 7467-7485
Author(s):  
Christopher J. Cox ◽  
David C. Noone ◽  
Max Berkelhammer ◽  
Matthew D. Shupe ◽  
William D. Neff ◽  
...  

Abstract. Radiation fogs at Summit Station, Greenland (72.58∘ N, 38.48∘ W; 3210 m a.s.l.), are frequently reported by observers. The fogs are often accompanied by fogbows, indicating the particles are composed of liquid; and because of the low temperatures at Summit, this liquid is supercooled. Here we analyze the formation of these fogs as well as their physical and radiative properties. In situ observations of particle size and droplet number concentration were made using scattering spectrometers near 2 and 10 m height from 2012 to 2014. These data are complemented by colocated observations of meteorology, turbulent and radiative fluxes, and remote sensing. We find that liquid fogs occur in all seasons with the highest frequency in September and a minimum in April. Due to the characteristics of the boundary-layer meteorology, the fogs are elevated, forming between 2 and 10 m, and the particles then fall toward the surface. The diameter of mature particles is typically 20–25 µm in summer. Number concentrations are higher at warmer temperatures and, thus, higher in summer compared to winter. The fogs form at temperatures as warm as −5 ∘C, while the coldest form at temperatures approaching −40 ∘C. Facilitated by the elevated condensation, in winter two-thirds of fogs occurred within a relatively warm layer above the surface when the near-surface air was below −40 ∘C, as cold as −57 ∘C, which is too cold to support liquid water. This implies that fog particles settling through this layer of cold air freeze in the air column before contacting the surface, thereby accumulating at the surface as ice without riming. Liquid fogs observed under otherwise clear skies annually imparted 1.5 W m−2 of cloud radiative forcing (CRF). While this is a small contribution to the surface radiation climatology, individual events are influential. The mean CRF during liquid fog events was 26 W m−2, and was sometimes much higher. An extreme case study was observed to radiatively force 5 ∘C of surface warming during the coldest part of the day, effectively damping the diurnal cycle. At lower elevations of the ice sheet where melting is more common, such damping could signal a role for fogs in preconditioning the surface for melting later in the day.


2020 ◽  
Author(s):  
Stephan Henne ◽  
Martin K. Vollmer ◽  
Martin Steinbacher ◽  
Markus Leuenberger ◽  
Frank Meinhardt ◽  
...  

<p>Globally, emissions of long-lived non-CO<sub>2</sub> greenhouse gases (GHG; methane, nitrous oxide and halogenated compounds) account for approximately 30 % of the radiative forcing of all anthropogenic GHG emissions. In industrialised countries, ‘bottom-up’ estimates come with relatively large uncertainties for anthropogenic non-CO<sub>2</sub> GHGs when compared with those of anthropogenic CO<sub>2</sub>. 'Top-down' methods on the country scale offer an independent support tool to reduce these uncertainties and detect biases in emissions reported to the UNFCCC. Based on atmospheric concentration observations these tools are also able to detect the effectiveness of emission mitigation measures on the long term.</p><p>Since 2012 the Swiss national inventory reporting (NIR) contains an appendix on 'top-down' studies for selected halogenated compound. Subsequently, this appendix was extended to include methane and nitrous oxide. Here, we present these updated (2020 submission) regional-scale (~300 x 200 km<sup>2</sup>) atmospheric inversion studies for non-CO<sub>2</sub> GHG emission estimates in Switzerland, making use of observations on the Swiss Plateau (Beromünster tall tower) as well as the neighbouring mountain-top sites Jungfraujoch and Schauinsland.</p><p>We report spatially and temporally resolved Swiss emissions for CH<sub>4</sub> (2013-2019), N<sub>2</sub>O (2017-2019) and total Swiss emissions for hydrofluorocarbons (HFCs) and SF<sub>6</sub> (2009-2019) based on a Bayesian inversion system and a tracer ratio method, respectively. Both approaches make use of transport simulations applying the high-resolution (7 x 7 km<sup>2</sup>) Lagrangian particle dispersion model (FLEXPART-COSMO). We compare these 'top-down' estimates to the 'bottom-up' results reported by Switzerland to the UNFCCC. Although we find good agreement between the two estimates for some species (CH<sub>4</sub>, N<sub>2</sub>O), emissions of other compounds (e.g., considerably lower 'top-down' estimates for HFC-134a) show larger discrepancies. Potential reasons for the disagreements are discussed. Currently, our 'top-down' information is only used for comparative purposes and does not feed back into the 'bottom-up' inventory.</p>


2015 ◽  
Vol 28 (15) ◽  
pp. 6267-6280 ◽  
Author(s):  
Nathaniel B. Miller ◽  
Matthew D. Shupe ◽  
Christopher J. Cox ◽  
Von P. Walden ◽  
David D. Turner ◽  
...  

Abstract The surface energy budget plays a critical role in determining the mass balance of the Greenland Ice Sheet, which in turn has significant implications for global sea levels. Nearly three years of data (January 2011–October 2013) are used to characterize the annual cycle of surface radiative fluxes and cloud radiative forcing (CRF) from the central Greenland Ice Sheet at Summit Station. The annual average CRF is 33 W m−2, representing a substantial net cloud warming of the central Greenland surface. Unlike at other Arctic sites, clouds warm the surface during the summer. The surface albedo is high at Summit throughout the year, limiting the cooling effect of the shortwave CRF and thus the total CRF is dominated by cloud longwave warming effects in all months. All monthly mean CRF values are positive (warming), as are 98.5% of 3-hourly cases. The annual cycle of CRF is largely driven by the occurrence of liquid-bearing clouds, with a minimum in spring and maximum in late summer. Optically thick liquid-bearing clouds [liquid water path (LWP) > 30 g m−2] produce an average longwave CRF of 85 W m−2. Shortwave CRF is sensitive to solar zenith angle and LWP. When the sun is well above the horizon (solar zenith angle < 65°), a maximum cloud surface warming occurs in the presence of optically thin liquid-bearing clouds. Ice clouds occur frequently above Summit and have mean longwave CRF values ranging from 10 to 60 W m−2, dependent on cloud thickness.


Sign in / Sign up

Export Citation Format

Share Document