scholarly journals Composition and mass size distribution of nitrated and oxygenated aromatic compounds in ambient particulate matter from southern and central Europe – implications for origin

Author(s):  
Zoran Kitanovski ◽  
Pourya Shahpoury ◽  
Constantini Samara ◽  
Aristeidis Voliotis ◽  
Gerhard Lammel

Abstract. Nitro-monoaromatic hydrocarbons (NMAHs), such as nitrocatechols, nitrophenols and nitrosalicylic acids, are important constituents of atmospheric particulate matter (PM) water soluble organic carbon (WSOC) and humic-like substances (HULIS). Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons (NPAHs, OPAHs) are toxic and ubiquitous in the ambient air; due to their light absorption properties, together with NMAHs they are part of aerosol brown carbon (BrC). We investigated the winter concentrations of these substance classes in size-resolved particulate matter (PM) from two urban sites in central and southern Europe, i.e. Mainz (MZ), Germany and Thessaloniki (TK), Greece. ∑11NMAH concentrations in PM10 and total PM were 0.51–8.38 and 12.1–72.1 ng m−3 at MZ and TK site, respectively, whereas ∑8OPAHs were 47–1636 and 858–4306 pg m−3, and ∑17NPAHs were ≤ 90 and 76–578 pg m−3, respectively. NMAHs and the water-soluble OPAHs contributed 0.4 and 1.8 %, and 0.0001 and 0.0002 % to the HULIS mass, at MZ and TK, respectively. The mass size distributions of the individual substances generally peaked in the smallest or second smallest size fraction i.e.,

2020 ◽  
Vol 20 (4) ◽  
pp. 2471-2487 ◽  
Author(s):  
Zoran Kitanovski ◽  
Pourya Shahpoury ◽  
Constantini Samara ◽  
Aristeidis Voliotis ◽  
Gerhard Lammel

Abstract. Nitro-monoaromatic hydrocarbons (NMAHs), such as nitrocatechols, nitrophenols and nitrosalicylic acids, are important constituents of atmospheric particulate matter (PM) water-soluble organic carbon (WSOC) and humic-like substances (HULIS). Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons (NPAHs and OPAHs) are toxic and ubiquitous in the ambient air; due to their light absorption properties, together with NMAHs, they are part of aerosol brown carbon (BrC). We investigated the winter concentrations of these substance classes in size-resolved PM from two urban sites in central and southern Europe, i.e. Mainz (MZ), Germany, and Thessaloniki (TK), Greece. The total concentration of 11 NMAHs (∑11NMAH concentrations) measured in PM10 and total PM were 0.51–8.38 and 12.1–72.1 ng m−3 at the MZ and TK sites, respectively, whereas ∑7OPAHs were 47–1636 and 858–4306 pg m−3, and ∑8NPAHs were ≤90 and 76–578 pg m−3, respectively. NMAHs contributed 0.4 % and 1.8 % to the HULIS mass at MZ and TK, respectively. The mass size distributions of the individual substances generally peaked in the smallest or second smallest size fraction i.e. <0.49 or 0.49–0.95 µm. The mass median diameter (MMD) of NMAHs was 0.10 and 0.27 µm at MZ and TK, respectively, while the MMDs of NPAHs and OPAHs were both 0.06 µm at MZ and 0.12 and 0.10 µm at TK. Correlation analysis between NMAHs, NPAHs, and OPAHs from one side and WSOC, HULIS, sulfate, and potassium from the other suggested that fresh biomass burning (BB) and fossil fuel combustion emissions dominated at the TK site, while aged air masses were predominant at the MZ site.


Author(s):  
Zoran Kitanovski ◽  
Jan Hovorka ◽  
Jan Kuta ◽  
Cecilia Leoni ◽  
Roman Prokeš ◽  
...  

Abstract Nitrated monoaromatic hydrocarbons (NMAHs) are ubiquitous in the environment and an important part of atmospheric humic-like substances (HULIS) and brown carbon. They are ecotoxic and with underresearched toxic potential for humans. NMAHs were determined in size-segregated ambient particulate matter collected at two urban sites in central Europe, Ostrava and Kladno, Czech Republic. The average sums of 12 NMAHs (Σ12NMAH) measured in winter PM10 samples from Ostrava and Kladno were 102 and 93 ng m−3, respectively, and 8.8 ng m−3 in summer PM10 samples from Ostrava. The concentrations in winter corresponded to 6.3–7.3% and 2.6–3.1% of HULIS-C and water-soluble organic carbon (WSOC), respectively. Nitrocatechols represented 67–93%, 61–73% and 28–96% of NMAHs in PM10 samples collected in winter and summer at Ostrava and in winter at Kladno, respectively. The mass size distribution of the targeted substance classes peaked in the submicrometre size fractions (PM1), often in the PM0.5 size fraction especially in summer. The bioaccessible fraction of NMAHs was determined by leaching PM3 samples in two simulated lung fluids, Gamble’s solution and artificial lysosomal fluid (ALF). More than half of NMAH mass is found bioaccessible, almost complete for nitrosalicylic acids. The bioaccessible fraction was generally higher when using ALF (mimics the chemical environment created by macrophage activity, pH 4.5) than Gamble’s solution (pH 7.4). Bioaccessibility may be negligible for lipophilic substances (i.e. log KOW > 4.5).


Atmosphere ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 490 ◽  
Author(s):  
Jong-Min Park ◽  
Young-Ji Han ◽  
Sung-Hwan Cho ◽  
Hyun-Woong Kim

PM2.5 has been a serious issue in South Korea not only in urban and industrial areas but also in rural and background areas. In this study, PM2.5 and its carbonaceous compounds including organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and polycyclic aromatic hydrocarbons (PAHs) were collected and analyzed in a small residential city. The PM2.5 concentration frequently exceeded the national ambient air quality standard during the spring and the winter, which often occurred concurrently with fog and mist events. Over the whole sampling period, both OC and the OC/EC ratio were considerably higher than the ratios in other cities in Korea, which suggests that sources other than vehicular emissions were important. The top 10% of OC/EC ratio samples could be explained by regional and long-range transport because there was a strong correlation between primary and secondary organic carbon. However, biomass combustion was likely to account for the consistently high OC concentration due to a strong correlation between WSOC and primary OC as well as the diagnostic ratio results of PAHs.


2009 ◽  
Vol 43 (11) ◽  
pp. 1099-1107 ◽  
Author(s):  
David C. Snyder ◽  
Andrew P. Rutter ◽  
Ryan Collins ◽  
Chris Worley ◽  
James J. Schauer

Author(s):  
Maja V. Jovanovic ◽  
Jasmina Z. Savic ◽  
Farhad Salimi ◽  
Svetlana Stevanovic ◽  
Reece A. Brown ◽  
...  

To estimate the oxidative potential (OP) of particulate matter (PM), two commonly used cell-free, molecular probes were applied: dithiothreitol (DTT) and dichloro-dihydro-fluorescein diacetate (DCFH-DA), and their performance was compared with 9,10-bis (phenylethynyl) anthracene-nitroxide (BPEAnit). To the best of our knowledge, this is the first study in which the performance of the DTT and DCFH has been compared with the BPEAnit probe. The average concentrations of PM, organic carbon (OC) and elemental carbon (EC) for fine (PM2.5) and coarse (PM10) particles were determined. The results were 44.8 ± 13.7, 9.8 ± 5.1 and 9.3 ± 4.8 µg·m−3 for PM2.5 and 75.5 ± 25.1, 16.3 ± 8.7 and 11.8 ± 5.3 µg·m−3 for PM10, respectively, for PM, OC and EC. The water-soluble organic carbon (WSOC) fraction accounted for 42 ± 14% and 28 ± 9% of organic carbon in PM2.5 and PM10, respectively. The average volume normalized OP values for the three assays depended on both the sampling periods and the PM fractions. The OPBPEAnit had its peak at 2 p.m.; in the afternoon, it was three times higher compared to the morning and late afternoon values. The DCFH and BPEAnit results were correlated (r = 0.64), while there was no good agreement between the BPEAnit and the DTT (r = 0.14). The total organic content of PM does not necessarily represent oxidative capacity and it shows varying correlation with the OP. With respect to the two PM fractions studied, the OP was mostly associated with smaller particles.


Author(s):  
Marie-Cecile Chalbot ◽  
Salma Siddiqui ◽  
Ilias G. Kavouras

Particulate matter is associated with increased morbidity and mortality; its effects depend on particle size and chemical content. It is important to understand the composition and resultant toxicological profile of particulate organic compounds, the largest and most complex fraction of particulate matter. The objective of the study was to delineate the nuclear magnetic resonance (NMR) spectral fingerprint of the biologically relevant water-soluble organic carbon (WSOC) fraction of size fractionated urban aerosol. A combination of one and two-dimensional NMR spectroscopy methods was used. The size distribution of particle mass, water-soluble extract, non-exchangeable organic hydrogen functional types and specific biomarkers such as levoglucosan, methane sulfonate, ammonium and saccharides indicated the contribution of fresh and aged wood burning emissions, anthropogenic and biogenic secondary aerosol for fine particles as well as primary traffic exhausts and pollen for large particles. Humic-like macromolecules in the fine particle size range included branched carbon structures containing aromatic, olefinic, keto and nitrile groups and terminal carboxylic and hydroxyl groups such as terpenoid-like polycarboxylic acids and polyols. Our study show that 2D-NMR spectroscopy can be applied to study the chemical composition of size fractionated aerosols.


2021 ◽  
Author(s):  
Maria Isabel Arce ◽  
Mia M. Bengtsson ◽  
Daniel von Schiller ◽  
Dominik Zak ◽  
Jana Täumer ◽  
...  

AbstractDroughts are recognized to impact global biogeochemical cycles. However, the implication of desiccation on in-stream carbon (C) cycling is not well understood yet. We subjected sediments from a lowland, organic rich intermittent stream to experimental desiccation over a 9-week-period to investigate temporal changes in microbial functional traits in relation to their redox requirements, carbon dioxide (CO2) and methane (CH4) fluxes and water-soluble organic carbon (WSOC). Concurrently, the implications of rewetting by simulated short rainfalls (4 and 21 mm) on gaseous C fluxes were tested. Early desiccation triggered dynamic fluxes of CO2 and CH4 with peak values of 383 and 30 mg C m−2 h−1 (mean ± SD), respectively, likely in response to enhanced aerobic mineralization and accelerated evasion. At longer desiccation, CH4 dropped abruptly, likely because of reduced abundance of anaerobic microbial traits. The CO2 fluxes ceased later, suggesting aerobic activity was constrained only by extended desiccation over time. We found that rainfall boosted fluxes of CO2, which were modulated by rainfall size and the preceding desiccation time. Desiccation also reduced the amount of WSOC and the proportion of labile compounds leaching from sediment. It remains questionable to which extent changes of the sediment C pool are influenced by respiration processes, microbial C uptake and cell lysis due to drying-rewetting cycles. We highlight that the severity of the dry period, which is controlled by its duration and the presence of precipitation events, needs detailed consideration to estimate the impact of intermittent flow on global riverine C fluxes.


Sign in / Sign up

Export Citation Format

Share Document