scholarly journals Supplementary material to "Particulate organic nitrates in eastern China: variation characteristics and effects of anthropogenic activities"

Author(s):  
Jun Zhang ◽  
Xinfeng Wang ◽  
Rui Li ◽  
Shuwei Dong ◽  
Yingnan Zhang ◽  
...  
2019 ◽  
Author(s):  
Jun Zhang ◽  
Xinfeng Wang ◽  
Rui Li ◽  
Shuwei Dong ◽  
Yingnan Zhang ◽  
...  

Abstract. Particulate organic nitrates (PONs) constitute a substantial fraction of secondary organic aerosols and have important effects on the reactive nitrogen budget and air quality. Laboratory studies have revealed the non-negligible influence of the interactions between anthropogenic pollutants and biogenic volatile organic compounds (BVOCs) on the formation of PONs. In this study, the contents of specific PONs, including monoterpene hydroxyl nitrate (MHN215), pinene keto nitrate (PKN229), limonene di-keto nitrate (LDKN247), oleic acid keto nitrate (OAKN359), oleic acid hydroxyl nitrate (OAHN361), and pinene sulfate organic nitrate (PSON295), in fine particulate matters at four rural and urban sites in eastern China were determined, and the variation characteristics of PONs and the impacts of human activities on PONs formation were investigated. The average concentration of PONs ranged from 116 to 548 ng m−3 at these four sites. PONs were present in higher levels in summer than in other seasons, owing to the high emissions of precursors and intensive photochemical activities in this hottest season. Among the six species of PONs, MHN215 was dominant. In addition, the proportion of OAKN359 in PONs in urban areas was much higher than that in the rural site, indicating that OAKN359 primarily originated from anthropogenic activities. Slight diurnal differences existed in the concentration and secondary formation of specific PONs and varied with locations, seasons, and precursor VOCs. The measurement results showed that PONs in North China were clearly influenced by coal combustion and biomass burning, while meteorological conditions and biogenic emissions were the dominant contributing factors in the South China. Biomass burning significantly enhanced the formation of PONs due to the elevated concentrations of ozone and the released BVOCs. Sulfur dioxide (SO2) emitted from coal combustion was able to react rapidly with Criegee intermediates, the reaction products of BVOCs with ozone, to produce PONs at high rates, suggesting that there is a substantially greater role played by SO2 in organic nitrate chemistry than has previously been assumed.


2021 ◽  
Vol 13 (5) ◽  
pp. 892
Author(s):  
Xiaomei Li ◽  
Pinhua Xie ◽  
Ang Li ◽  
Jin Xu ◽  
Zhaokun Hu ◽  
...  

This paper studied the method for converting the aerosol extinction to the mass concentration of particulate matter (PM) and obtained the spatio-temporal distribution and transportation of aerosol, nitrogen dioxide (NO2), sulfur dioxide (SO2), and formaldehyde (HCHO) based on multi-axis differential optical absorption spectroscopy (MAX-DOAS) observations in Dalian (38.85°N, 121.36°E), Qingdao (36.35°N, 120.69°E), and Shanghai (31.60°N, 121.80°E) from 2019 to 2020. The PM2.5 measured by the in situ instrument and the PM2.5 simulated by the conversion formula showed a good correlation. The correlation coefficients R were 0.93 (Dalian), 0.90 (Qingdao), and 0.88 (Shanghai). A regular seasonality of the three trace gases is found, but not for aerosols. Considerable amplitudes in the weekly cycles were determined for NO2 and aerosols, but not for SO2 and HCHO. The aerosol profiles were nearly Gaussian, and the shapes of the trace gas profiles were nearly exponential, except for SO2 in Shanghai and HCHO in Qingdao. PM2.5 presented the largest transport flux, followed by NO2 and SO2. The main transport flux was the output flux from inland to sea in spring and winter. The MAX-DOAS and the Copernicus Atmosphere Monitoring Service (CAMS) models’ results were compared. The overestimation of NO2 and SO2 by CAMS is due to its overestimation of near-surface gas volume mixing ratios.


2020 ◽  
Vol 21 (1) ◽  
pp. geochem2019-060
Author(s):  
Yu Guo ◽  
Wenzhe Gang ◽  
Gang Gao ◽  
Shangru Yang ◽  
Chong Jiang ◽  
...  

Paleogene sediments, especially the third member of the Dongying Formation (Ed3) and the first and third members of the Shahejie Formation (Es1 and Es3), have been regarded as the most important source rocks in the Nanpu Sag. Organic and inorganic analyses, including Rock-Eval pyrolysis, gas chromatography-mass spectrometry, and element geochemistry, in 91 mudstone samples, were used to reconstruct the palaeoenvironmental conditions, such as palaeoclimate, palaeo-salinity and palaeo-redox conditions, and to recognize the origin of organic matter. The results show that Es3 has a higher TOC content than Es1 and Ed3. Hydrocarbon genetic potential (S1 + S2) of the samples indicate fair to good hydrocarbon potential. The kerogen type of Ed3 and Es1 source rocks are Type II1–II2, while Es3 source rocks are dominated by Type II2–III kerogens. Biomarkers and inorganic geochemical indicatives of source rocks, such as Pr/Ph, V/(V + Ni) and Cu/Zn, indicate a lacustrine environment with fresh to brackish water under suboxic to anoxic conditions during deposition. Ed3 source rocks are characterized by low G/C30H (gamacerane/C30hopane) (<0.1), TT/C30H (tricyclic terpane/C30hopane) and S/H (serane/hopane), high Pr/Ph (pristane/phytane) and C24TeT/C23TT (C24tetracyclic terpane/C23tricyclic terpane), indicating mixed input of both algae and terrestrial higher plants, dominated by terrestrial higher plants. Es1 source rocks display medium G/C30H, TT/C30H, S/H, Pr/Ph and C24TeT/C23TT, indicative of a mixed input of both algae and terrestrial higher plants. Es3 source rocks are characterized by high G/C30H (>0.1), TT/C30H and S/H, low Pr/Ph and C24TeT/C23TT, typical of a mixed input of algae and terrestrial higher plants, with algal dominance. Ed3, Es1 and Es3 source rocks were mostly deposited in semi-arid to humid-warm climate conditions, with an average temperature higher than 15°C. This study suggests that suitable temperatures, a fresh to brackish lacustrine environment and suboxic to anoxic conditions could result in a high organic matter concentration and preservation, thus providing prerequisites for the formation of high-quality source rocks.Supplementary material: Tables S1–S3 are available at https://doi.org/10.6084/m9.figshare.c.5227684


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1928
Author(s):  
Dandan Xu ◽  
Dong Zhang ◽  
Dan Shi ◽  
Zhaoqing Luan

Open surface freshwater is an important resource for terrestrial ecosystems. However, climate change, seasonal precipitation cycling, and anthropogenic activities add high variability to its availability. Thus, timely and accurate mapping of open surface water is necessary. In this study, a methodology based on the concept of spatial autocorrelation was developed for automatic water extraction from Landsat series images using Taihu Lake in south-eastern China as an example. The results show that this method has great potential to extract continuous open surface water automatically, even when the water surface is covered by floating vegetation or algal blooms. The results also indicate that the second shortwave-infrared band (SWIR2) band performs best for water extraction when water is turbid or covered by surficial vegetation. Near-infrared band (NIR), first shortwave-infrared band (SWIR1), and SWIR2 have consistent extraction success when the water surface is not covered by vegetation. Low filter image processing greatly overestimated extracted water bodies, and cloud and image salt and pepper issues have a large impact on water extraction using the methods developed in this study.


Sign in / Sign up

Export Citation Format

Share Document