scholarly journals Using a coupled LES-aerosol radiation model to investigate urban haze: Sensitivity to aerosol loading and meteorological conditions

Author(s):  
Jessica Slater ◽  
Juha Tonttila ◽  
Gordon McFiggans ◽  
Sami Romakkaniemi ◽  
Thomas Kühn ◽  
...  

Abstract. The aerosol-radiation-meteorological feedback loop is the process by which aerosols interact with solar radiation to influence boundary layer meteorology. Through this feedback, aerosols cause cooling of the surface, resulting in reduced buoyant turbulence, enhanced atmospheric stratification and suppressed boundary layer growth. These changes in meteorology result in the accumulation of aerosols in a shallow boundary layer, which can enhance the extent of aerosol-radiation interactions. The feedback effect is thought to be important during periods of high aerosol concentrations, for example during urban haze. However, direct quantification and isolation of the factors and processes affecting the feedback loop has thus far been limited to observations and low resolution modelling studies. The coupled LES-aerosol model, UCLALES-SALSA, allows for direct interpretation on the sensitivity of boundary layer dynamics to aerosol perturbations. In this work, UCLALES-SALSA has for the first time been explicitly set up to model the urban environment, including addition of an anthropogenic heat flux and treatment of heat storage terms, to examine the sensitivity of meteorology to the newly coupled aerosol-radiation scheme. We find that: a) Sensitivity of boundary layer dynamics in the model to initial meteorological conditions is extremely high, b) Simulations with high aerosol loading (220 μg/m3) compared to low aerosol loading (55 μg/m3) cause overall surface cooling and a reduction in sensible heat flux, turbulent kinetic energy and planetary boundary layer height for all three days examined and c) Initial meteorological conditions impact the vertical distribution of aerosols throughout the day.

2020 ◽  
Vol 20 (20) ◽  
pp. 11893-11906
Author(s):  
Jessica Slater ◽  
Juha Tonttila ◽  
Gordon McFiggans ◽  
Paul Connolly ◽  
Sami Romakkaniemi ◽  
...  

Abstract. The aerosol–radiation–meteorology feedback loop is the process by which aerosols interact with solar radiation to influence boundary layer meteorology. Through this feedback, aerosols cause cooling of the surface, resulting in reduced buoyant turbulence, enhanced atmospheric stratification and suppressed boundary layer growth. These changes in meteorology result in the accumulation of aerosols in a shallow boundary layer, which can enhance the extent of aerosol–radiation interactions. The feedback effect is thought to be important during periods of high aerosol concentrations, for example, during urban haze. However, direct quantification and isolation of the factors and processes affecting the feedback loop have thus far been limited to observations and low-resolution modelling studies. The coupled large-eddy simulation (LES)–aerosol model, the University of California, Los Angeles large-eddy simulation – Sectional Aerosol Scheme for Large Scale Applications (UCLALES-SALSA), allows for direct interpretation on the sensitivity of boundary layer dynamics to aerosol perturbations. In this work, UCLALES-SALSA has for the first time been explicitly set up to model the urban environment, including addition of an anthropogenic heat flux and treatment of heat storage terms, to examine the sensitivity of meteorology to the newly coupled aerosol–radiation scheme. We find that (a) sensitivity of boundary layer dynamics in the model to initial meteorological conditions is extremely high, (b) simulations with high aerosol loading (220 µg m−3) compared to low aerosol loading (55 µg m−3) cause overall surface cooling and a reduction in sensible heat flux, turbulent kinetic energy and planetary boundary layer height for all 3 d examined, and (c) initial meteorological conditions impact the vertical distribution of aerosols throughout the day.


2013 ◽  
Vol 13 (9) ◽  
pp. 4645-4666 ◽  
Author(s):  
H. C. Ward ◽  
J. G. Evans ◽  
C. S. B. Grimmond

Abstract. Eddy covariance measurements of the turbulent sensible heat, latent heat and carbon dioxide fluxes for 12 months (2011–2012) are reported for the first time for a suburban area in the UK. The results from Swindon are comparable to suburban studies of similar surface cover elsewhere but reveal large seasonal variability. Energy partitioning favours turbulent sensible heat during summer (midday Bowen ratio 1.4–1.6) and latent heat in winter (0.05–0.7). A significant proportion of energy is stored (and released) by the urban fabric and the estimated anthropogenic heat flux is small but non-negligible (0.5–0.9 MJ m−2 day−1). The sensible heat flux is negative at night and for much of winter daytimes, reflecting the suburban nature of the site (44% vegetation) and relatively low built fraction (16%). Latent heat fluxes appear to be water limited during a dry spring in both 2011 and 2012, when the response of the surface to moisture availability can be seen on a daily timescale. Energy and other factors are more relevant controls at other times; at night the wind speed is important. On average, surface conductance follows a smooth, asymmetrical diurnal course peaking at around 6–9 mm s−1, but values are larger and highly variable in wet conditions. The combination of natural (vegetative) and anthropogenic (emission) processes is most evident in the temporal variation of the carbon flux: significant photosynthetic uptake is seen during summer, whilst traffic and building emissions explain peak release in winter (9.5 g C m−2 day−1). The area is a net source of CO2 annually. Analysis by wind direction highlights the role of urban vegetation in promoting evapotranspiration and offsetting CO2 emissions, especially when contrasted against peak traffic emissions from sectors with more roads. Given the extent of suburban land use, these results have important implications for understanding urban energy, water and carbon dynamics.


2019 ◽  
Vol 58 (9) ◽  
pp. 1955-1972 ◽  
Author(s):  
Xiangyu Ao ◽  
Liang Wang ◽  
Xing Zhi ◽  
Wen Gu ◽  
Hequn Yang ◽  
...  

AbstractThere is an ongoing debate as to whether the UHI intensity (UHII) is enhanced or dampened under heat waves (HWs). Using a comprehensive dataset including continuous surface energy flux data for three summers (2016–18) and automated weather station data for six summers (2013–18) in Shanghai, China, we find synergies between UHIs and HWs when either a coastal or an inland suburban site is used as the reference site. We further find that during HWs, the increase of net radiation at the urban site is larger than that at the suburban site. More importantly, the latent heat flux is slightly reduced at the urban site but is slightly increased at the suburban site, while the increase of the sensible heat flux is larger at the urban site. This change of surface energy partitioning, together with the increased anthropogenic heat flux during HWs, exacerbates the UHII. The change of surface energy partitioning is consistent with the observed decrease of relative humidity ratio between urban and suburban areas. The UHII is stronger when the regional wind speed is reduced and under sea breeze, both of which are found to be associated with HWs in our study region. This study suggests that there are multiple factors controlling the interactions between UHIs and HWs, which may explain why synergies between UHIs and HWs are only found in certain metropolitan regions and/or under certain HW events.


2018 ◽  
Vol 19 (12) ◽  
pp. 1983-2005 ◽  
Author(s):  
Xiangyu Ao ◽  
C. S. B. Grimmond ◽  
H. C. Ward ◽  
A. M. Gabey ◽  
Jianguo Tan ◽  
...  

Abstract The Surface Urban Energy and Water Balance Scheme (SUEWS) is used to investigate the impact of anthropogenic heat flux QF and irrigation on surface energy balance partitioning in a central business district of Shanghai. Diurnal profiles of QF are carefully derived based on city-specific hourly electricity consumption data, hourly traffic data, and dynamic population density. The QF is estimated to be largest in summer (mean daily peak 236 W m−2). When QF is omitted, the SUEWS sensible heat flux QH reproduces the observed diurnal pattern generally well, but the magnitude is underestimated compared to observations for all seasons. When QF is included, the QH estimates are improved in spring, summer, and autumn but are poorer in winter, indicating winter QF is overestimated. Inclusion of QF has little influence on the simulated latent heat flux QE but improves the storage heat flux estimates except in winter. Irrigation, both amount and frequency, has a large impact on QE. When irrigation is not considered, the simulated QE is underestimated for all seasons. The mean summer daytime QE is largely overestimated compared to observations under continuous irrigation conditions. Model results are improved when irrigation occurs with a 3-day frequency, especially in summer. Results are consistent with observed monthly outdoor water use. This study highlights the importance of appropriately including QF and irrigation in urban land surface models—terms not generally considered in many previous studies.


2020 ◽  
Vol 13 (6) ◽  
pp. 3221-3233 ◽  
Author(s):  
Andreas Behrendt ◽  
Volker Wulfmeyer ◽  
Christoph Senff ◽  
Shravan Kumar Muppa ◽  
Florian Späth ◽  
...  

Abstract. We present the first measurement of the sensible heat flux (H) profile in the convective boundary layer (CBL) derived from the covariance of collocated vertical-pointing temperature rotational Raman lidar and Doppler wind lidar measurements. The uncertainties of the H measurements due to instrumental noise and limited sampling are also derived and discussed. Simultaneous measurements of the latent heat flux profile (L) and other turbulent variables were obtained with the combination of water-vapor differential absorption lidar (WVDIAL) and Doppler lidar. The case study uses a measurement example from the HOPE (HD(CP)2 Observational Prototype Experiment) campaign, which took place in western Germany in 2013 and presents a cloud-free well-developed quasi-stationary CBL. The mean boundary layer height zi was at 1230 m above ground level. The results show – as expected – positive values of H in the middle of the CBL. A maximum of (182±32) W m−2, with the second number for the noise uncertainty, is found at 0.5 zi. At about 0.7 zi, H changes sign to negative values above. The entrainment flux was (-62±27) W m−2. The mean sensible heat flux divergence in the observed part of the CBL above 0.3 zi was −0.28 W m−3, which corresponds to a warming of 0.83 K h−1. The L profile shows a slight positive mean flux divergence of 0.12 W m−3 and an entrainment flux of (214±36) W m−2. The combination of H and L profiles in combination with variance and other turbulent parameters is very valuable for the evaluation of large-eddy simulation (LES) results and the further improvement and validation of turbulence parameterization schemes.


2019 ◽  
Vol 11 (9) ◽  
pp. 1132 ◽  
Author(s):  
Shasha Wang ◽  
Deyong Hu ◽  
Shanshan Chen ◽  
Chen Yu

Anthropogenic heat (AH) generated by human activities has a major impact on urban and regional climate. Accurately estimating anthropogenic heat is of great significance for studies on urban thermal environment and climate change. In this study, a gridded anthropogenic heat flux (AHF) estimation scheme was constructed based on socio-economic data, energy-consumption data, and multi-source remote sensing data using a partition modeling method, which takes into account the regional characteristics of AH emission caused by the differences in regional development levels. The refined AHF mapping in China was realized with a high resolution of 500 m. The results show that the spatial distribution of AHF has obvious regional characteristics in China. Compared with the AHF in provinces, the AHF in Shanghai is the highest which reaches 12.56 W·m−2, followed by Tianjin, Beijing, and Jiangsu. The AHF values are 5.92 W·m−2, 3.35 W·m−2, and 3.10 W·m−2, respectively. As can be seen from the mapping results of refined AHF, the high-value AHF aggregation areas are mainly distributed in north China, east China, and south China. The high-value AHF in urban areas is concentrated in 50–200 W·m−2, and maximum AHF in Shenzhen urban center reaches 267 W·m−2. Further, compared with other high resolution AHF products, it can be found that the AHF results in this study have higher spatial heterogeneity, which can better characterize the emission characteristics of AHF in the region. The spatial pattern of the AHF estimation results correspond to the distribution of building density, population, and industry zone. The high-value AHF areas are mainly distributed in airports, railway stations, industry areas, and commercial centers. It can thus be seen that the AHF estimation models constructed by the partition modeling method can well realize the estimation of large-scale AHF and the results can effectively express the detailed spatial distribution of AHF in local areas. These results can provide technical ideas and data support for studies on surface energy balance and urban climate change.


2020 ◽  
Vol 142 (1-2) ◽  
pp. 701-728
Author(s):  
Denise Hertwig ◽  
Sue Grimmond ◽  
Margaret A. Hendry ◽  
Beth Saunders ◽  
Zhengda Wang ◽  
...  

Abstract Two urban schemes within the Joint UK Land Environment Simulator (JULES) are evaluated offline against multi-year flux observations in the densely built-up city centre of London and in suburban Swindon (UK): (i) the 1-tile slab model, used in climate simulations; (ii) the 2-tile canopy model MORUSES (Met Office–Reading Urban Surface Exchange Scheme), used for numerical weather prediction over the UK. Offline, both models perform better at the suburban site, where differences between the urban schemes are less pronounced due to larger vegetation fractions. At both sites, the outgoing short- and longwave radiation is more accurately represented than the turbulent heat fluxes. The seasonal variations of model skill are large in London, where the sensible heat flux in autumn and winter is strongly under-predicted if the large city centre magnitudes of anthropogenic heat emissions are not represented. The delayed timing of the sensible heat flux in the 1-tile model in London results in large negative bias in the morning. The partitioning of the urban surface into canyon and roof in MORUSES improves this as the roof tile is modelled with a very low thermal inertia, but phase and amplitude of the grid box-averaged flux critically depend on accurate knowledge of the plan-area fractions of streets and buildings. Not representing non-urban land cover (e.g. vegetation, inland water) in London results in severely under-predicted latent heat fluxes. Control runs demonstrate that the skill of both models can be greatly improved by providing accurate land cover and morphology information and using representative anthropogenic heat emissions, which is essential if the model output is intended to inform integrated urban services.


Sign in / Sign up

Export Citation Format

Share Document