scholarly journals Less atmospheric radiative heating by dust due to the synergy of coarser size and aspherical shape

2021 ◽  
Vol 21 (22) ◽  
pp. 16869-16891
Author(s):  
Akinori Ito ◽  
Adeyemi A. Adebiyi ◽  
Yue Huang ◽  
Jasper F. Kok

Abstract. Mineral dust aerosols cool and warm the atmosphere by scattering and absorbing solar (shortwave: SW) and thermal (longwave: LW) radiation. However, significant uncertainties remain in dust radiative effects, largely due to differences in the dust size distribution and spectral optical properties simulated in Earth system models. Dust models typically underestimate the coarse dust load (more than 2.5 µm in diameter) and assume a spherical shape, which leads to an overestimate of the fine dust load (less than 2.5 µm) after the dust emissions in the models are scaled to match observed dust aerosol optical depth at 550 nm (DAOD550). Here, we improve the simulated dust properties with data sets that leverage measurements of size-resolved dust concentration, asphericity factor, and refractive index in a coupled global chemical transport model with a radiative transfer module. After the adjustment of size-resolved dust concentration and spectral optical properties, the global and annual average of DAOD550 from the simulation increases from 0.023 to 0.029 and falls within the range of a semi-observationally based estimate (0.030 ± 0.005). The reduction of fine dust load after the adjustment leads to a reduction of the SW cooling at the top of the atmosphere (TOA). To improve agreement against a semi-observationally based estimate of the radiative effect efficiency at TOA, we find that a less absorptive SW dust refractive index is required for coarser aspherical dust. Thus, only a minor difference is estimated for the net global dust radiative effect at TOA (−0.08 vs. −0.00 W m−2 on a global scale). Conversely, our sensitivity simulations reveal that the surface warming is substantially enhanced near the strong dust source regions (less cooling to −0.23 from −0.60 W m−2 on a global scale). Thus, less atmospheric radiative heating is estimated near the major source regions (less heating to 0.15 from 0.59 W m−2 on a global scale), because of enhanced LW warming at the surface by the synergy of coarser size and aspherical shape.

2021 ◽  
Author(s):  
Akinori Ito ◽  
Adeyemi A. Adebiyi ◽  
Yue Huang ◽  
Jasper F. Kok

Abstract. Mineral dust aerosols cool and warm the atmosphere by scattering and absorbing both solar (short-wave: SW) and thermal (long-wave: LW) radiation. However, large uncertainties remain in dust radiative effects, largely due to differences in the dust size distribution and optical properties simulated in Earth system models. Here, we improve the simulated dust properties with datasets that leverage measurements of size-resolved dust concentration and asphericity factor (improved simulation) in a coupled global chemical transport model (IMPACT) with a radiative transfer module (RRTMG) (default simulation). The global and annual average of dust aerosol optical depth at 550 nm (DAOD550) from the improved simulation (0.029) falls within the range of a semi-observation-based estimate (0.030 ± 0.005), in contrast to that (0.023) of the default simulation. Improved agreement against semi-observation-based estimate of the radiative effect efficiency was obtained using less absorptive SW and more absorptive LW dust refractive indices. Our sensitivity simulations reveal that the improved simulation leads to a similar net global dust radiative effect at the Top Of Atmosphere (TOA) on a global scale to the default simulation (−0.08 vs. −0.09 W ·m−2) but results in less cooling at the surface (−0.23 vs. −0.88 W ·m−2), because of enhanced LW warming by coarser aspherical dust. Our results thus suggest less atmospheric radiative heating due to aspherical dust with coarser size over the major source regions (0.15 vs. 0.79 W ·m−2 on a global scale).


2018 ◽  
Vol 18 (13) ◽  
pp. 9681-9703 ◽  
Author(s):  
Jamie R. Banks ◽  
Kerstin Schepanski ◽  
Bernd Heinold ◽  
Anja Hünerbein ◽  
Helen E. Brindley

Abstract. Satellite imagery of atmospheric mineral dust is sensitive to the optical properties of the dust, governed by the mineral refractive indices, particle size, and particle shape. In infrared channels the imagery is also sensitive to the dust layer height and to the surface and atmospheric environment. Simulations of mineral dust in infrared Desert Dust imagery from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) have been performed, using the COSMO-MUSCAT (COSMO: COnsortium for Small-scale MOdelling; MUSCAT: MUltiScale Chemistry Aerosol Transport Model) dust transport model and the Radiative Transfer for TOVS (RTTOV) program, in order to investigate the sensitivity of the imagery to assumed dust properties. This paper introduces the technique and performs initial validation and comparisons with SEVIRI measurements over North Africa for daytime hours during 6 months covering June and July of 2011–2013. Using T-matrix scattering theory and assuming the dust particles to be spherical or spheroidal, wavelength- and size-dependent dust extinction values are calculated for a number of different dust refractive index databases, along with several values of the particle aspect ratio, denoting the particle shape. The consequences for the infrared extinction values of both the particle shape and the particle orientation are explored: this analysis shows that as the particle asphericity increases, the extinctions increase if the particles are aligned horizontally, and decrease if they are aligned vertically. Randomly oriented spheroidal particles have very similar infrared extinction properties as spherical particles, whereas the horizontally and vertically aligned particles can be considered to be the upper and lower bounds on the extinction values. Inputting these values into COSMO-MUSCAT-RTTOV, it is found that spherical particles do not appear to be sufficient to describe fully the resultant colour of the dust in the infrared imagery. Comparisons of SEVIRI and simulation colours indicate that of the dust types tested, the dust refractive index dataset produced by Volz (1973) shows the most similarity in the colour response to dust in the SEVIRI imagery, although the simulations have a smaller range of colour than do the observations. It is also found that the thermal imagery is most sensitive to intermediately sized particles (radii between 0.9 and 2.6 µm): larger particles are present in too small a concentration in the simulations, as well as with insufficient contrast in extinction between wavelength channels, to have much ability to perturb the resultant colour in the SEVIRI dust imagery.


2018 ◽  
Vol 18 (2) ◽  
pp. 635-653 ◽  
Author(s):  
Xuan Wang ◽  
Colette L. Heald ◽  
Jiumeng Liu ◽  
Rodney J. Weber ◽  
Pedro Campuzano-Jost ◽  
...  

Abstract. Organic aerosols (OA) that strongly absorb solar radiation in the near-UV are referred to as brown carbon (BrC). The sources, evolution, and optical properties of BrC remain highly uncertain and contribute significantly to uncertainty in the estimate of the global direct radiative effect (DRE) of aerosols. Previous modeling studies of BrC optical properties and DRE have been unable to fully evaluate model performance due to the lack of direct measurements of BrC absorption. In this study, we develop a global model simulation (GEOS-Chem) of BrC and test it against BrC absorption measurements from two aircraft campaigns in the continental US (SEAC4RS and DC3). To the best of our knowledge, this is the first study to compare simulated BrC absorption with direct aircraft measurements. We show that BrC absorption properties estimated based on previous laboratory measurements agree with the aircraft measurements of freshly emitted BrC absorption but overestimate aged BrC absorption. In addition, applying a photochemical scheme to simulate bleaching/degradation of BrC improves model skill. The airborne observations are therefore consistent with a mass absorption coefficient (MAC) of freshly emitted biomass burning OA of 1.33 m2 g−1 at 365 nm coupled with a 1-day whitening e-folding time. Using the GEOS-Chem chemical transport model integrated with the RRTMG radiative transfer model, we estimate that the top-of-the-atmosphere all-sky direct radiative effect (DRE) of OA is −0.344 Wm−2, 10 % higher than that without consideration of BrC absorption. Therefore, our best estimate of the absorption DRE of BrC is +0.048 Wm−2. We suggest that the DRE of BrC has been overestimated previously due to the lack of observational constraints from direct measurements and omission of the effects of photochemical whitening.


2017 ◽  
Author(s):  
Xuan Wang ◽  
Colette L. Heald ◽  
Jiumeng Liu ◽  
Rodney J. Weber ◽  
Pedro Campuzano-Jost ◽  
...  

Abstract. Organic aerosols (OA) that strongly absorbs solar radiation in the near-UV are referred to as brown carbon (BrC). However the sources, evolution, and optical properties of BrC remain highly uncertain, and contribute significantly to uncertainty in the estimate of the global direct radiative effect (DRE) of aerosols. Previous modeling studies of BrC optical properties and DRE have been unable to fully evaluate model performance due to the lack of direct measurements of BrC absorption. In this study, we develop a global model simulation (GEOS-Chem) of BrC and test it against BrC absorption measurements from two aircraft campaigns in the continental U.S. (SEAC4RS and DC3). To our knowledge, this is the first study to compare simulated BrC absorption with direct ambient measurements. We show that the BrC absorption properties from biomass burning estimated based on previous laboratory measurements overestimate the aircraft measurements of ambient BrC absorption. In addition, applying a photochemical scheme to simulate bleaching/degradation of BrC improves model skill. The airborne observations are consistent with a mass absorption coefficient (MAC) of freshly emitted biomass burning OA of 0.57 m2 g−1 at 365 nm with an absorption Ångström exponents (AAE) = 3.1 for 300 & 600 wavelengths pair, coupled with a 1 day whitening e-folding time. Using the GEOS-Chem chemical transport model integrated with the RRTMG radiative transfer model, we estimate that the top-of-atmosphere all-sky direct radiative effect (DRE) of OA is −0.350 Wm−2, 10 % higher than that without consideration of BrC absorption. Therefore, our best estimate of the absorption DRE of BrC is +0.042 Wm−2. We suggest that the DRE of BrC has been overestimated previously due to the lack of observational constraints from direct measurements and omission of the effects of photochemical whitening.


2018 ◽  
Author(s):  
Jamie R. Banks ◽  
Kerstin Schepanski ◽  
Bernd Heinold ◽  
Anja Hünerbein ◽  
Helen E. Brindley

Abstract. Satellite imagery of atmospheric mineral dust is sensitive to the optical properties of the dust, governed by the mineral refractive indices, particle size, and particle shape. In infrared channels the imagery is also sensitive to the dust layer height and to the surface and atmospheric environment. Simulations of mineral dust in infrared Desert Dust imagery from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) have been performed, using the COSMO-MUSCAT (COSMO: COnsortium for Small-scale MOdelling; MUSCAT: MUltiScale Chemistry Aerosol Transport Model) dust transport model and the Radiative Transfer for TOVS (RTTOV) program, in order to investigate the sensitivity of the imagery to assumed dust properties. This paper introduces the technique and performs initial validation and comparisons with SEVIRI measurements over North Africa for daytime hours during the six months of the Junes and Julys of 2011–2013. Using T-matrix scattering theory and assuming the dust particles to be spherical or spheroidal, wavelength- and size-dependent dust extinction values are calculated for a number of different dust refractive index databases, along with several values of the particle aspect ratio, denoting the particle shape. It is found that spherical particles do not appear to be sufficient to describe fully the resultant colour of the dust in the infrared imagery. Comparisons of SEVIRI and simulation colours indicate that of the dust types tested, the dust refractive index dataset produced by Volz (1973) shows the most similarity in the colour response to dust in the SEVIRI imagery, although the simulations have a smaller range of colour than do the observations. It is also found that the thermal imagery is most sensitive to intermediately sized particles (radii between 0.9 and 2.6 μm): larger particles are present in too small a concentration in the simulations, as well as with insufficient contrast in extinction between wavelength channels, to have much ability to perturb the resultant colour in the SEVIRI dust imagery.


2016 ◽  
Author(s):  
Claudia Di Biagio ◽  
Paola Formenti ◽  
Yves Balkanski ◽  
Lorenzo Caponi ◽  
Mathieu Cazaunau ◽  
...  

Abstract. Modelling the interaction of dust with longwave (LW) radiation is still a challenge due to the scarcity of information on the complex refractive index of dust from different source regions. In particular, little is known on the variability of the refractive index as a function of the dust mineralogical composition, depending on the source region of emission, and the dust size distribution, which is modified during transport. As a consequence, to date, climate models and remote sensing retrievals generally use a spatially-invariant and time-constant value for the dust LW refractive index. In this paper the variability of the mineral dust LW refractive index as a function of its mineralogical composition and size distribution is explored by in situ measurements in a large smog chamber. Mineral dust aerosols were generated from nineteen natural soils from Northern Africa, Sahel, Middle East, Eastern Asia, North and South America, Southern Africa, and Australia. Soil samples were selected from a total of 137 samples available in order to represent the diversity of sources from arid and semi-arid areas worldwide and to account for the heterogeneity of the soil composition at the global scale. Aerosol samples generated from soils were re-suspended in the chamber, where their LW extinction spectra (2–16 µm), size distribution, and mineralogical composition were measured. The generated aerosol exhibits a realistic size distribution and mineralogy, including both the sub- and super-micron fractions, and represents in typical atmospheric proportions the main LW-active minerals, such as clays, quartz, and calcite. The complex refractive index of the aerosol is obtained by an optical inversion based upon the measured extinction spectrum and size distribution. Results from the present study show that the LW refractive index of dust varies greatly both in magnitude and spectral shape from sample to sample, following the changes in the measured particle composition. The real part (n) of the refractive index is between 0.84 and 1.94, while the imaginary part (k) is ~ 0.001 and 0.92. For instance, the strength of the absorption at ~ 7 and 11.4 µm depends on the amount of calcite within the samples, while the absorption between 8 and 14 µm is determined by the relative abundance of quartz and clays. A linear relationship between the magnitude of the refractive index at 7.0, 9.2, and 11.4 µm and the mass concentration of calcite and quartz absorbing at these wavelengths was found. We suggest that this may lead to predictive rules to estimate the LW refractive index of dust in specific bands based on an assumed or predicted mineralogical composition, or conversely, to estimate the dust composition from measurements of the LW extinction at specific wavebands. Based on the results of the present study, we recommend using refractive indices specific for the different source regions, rather than generic values, in climate models and remote sensing applications. Our observations also suggest that the refractive index of dust in the LW does not change due to the loss of coarse particles by gravitational settling, so that a constant value could be assumed close to sources and during transport. The results of the present study also clearly suggest that the LW refractive index of dust varies at the regional scale. This regional variability has to be characterized further in order to better assess the influence of dust on regional climate, as well as to increase the accuracy of satellite retrievals over regions affected by dust. We make the whole dataset of the dust complex refractive indices obtained here available to the scientific community by publishing it in the supplementary material to this paper.


2008 ◽  
Vol 1 (1) ◽  
pp. 345-379
Author(s):  
A. Voulgarakis ◽  
N. H. Savage ◽  
O. Wild ◽  
G. D. Carver ◽  
K. C. Clemitshaw ◽  
...  

Abstract. A new version of the p-TOMCAT Chemical Transport Model (CTM) which includes an improved photolysis code, Fast-JX, is validated. Through offline testing we show that Fast-JX captures observed J(NO2) and J(O1D) values well, though with some overestimation of J(O1D) when comparing to data retrieved during a flight. By comparing p-TOMCAT output of CO and ozone with measurements, we find that the inclusion of Fast-JX in the CTM strongly improves the latter's ability to capture the seasonality and levels of tracers' concentrations. A probability distribution analysis demonstrates that photolysis rates and oxidant (OH, ozone) concentrations cover a broader range of values when using Fast-JX instead of the standard two-stream photolysis code. This is not only driven by improvements in the seasonality of cloudiness but also even more by the better representation of cloud spatial variability. We use three different cloud treatments to study the radiative effect of clouds on the abundances of a range of tracers and find only modest effects on a global scale. This is consistent with the most relevant recent study. The new version of the validated CTM will be used for a variety of future studies examining the variability of tropospheric composition and its drivers.


2020 ◽  
Vol 92 (2) ◽  
pp. 20402
Author(s):  
Kaoutar Benthami ◽  
Mai ME. Barakat ◽  
Samir A. Nouh

Nanocomposite (NCP) films of polycarbonate-polybutylene terephthalate (PC-PBT) blend as a host material to Cr2O3 and CdS nanoparticles (NPs) were fabricated by both thermolysis and casting techniques. Samples from the PC-PBT/Cr2O3 and PC-PBT/CdS NCPs were irradiated using different doses (20–110 kGy) of γ radiation. The induced modifications in the optical properties of the γ irradiated NCPs have been studied as a function of γ dose using UV Vis spectroscopy and CIE color difference method. Optical dielectric loss and Tauc's model were used to estimate the optical band gaps of the NCP films and to identify the types of electronic transition. The value of optical band gap energy of PC-PBT/Cr2O3 NCP was reduced from 3.23 to 3.06 upon γ irradiation up to 110 kGy, while it decreased from 4.26 to 4.14 eV for PC-PBT/CdS NCP, indicating the growth of disordered phase in both NCPs. This was accompanied by a rise in the refractive index for both the PC-PBT/Cr2O3 and PC-PBT/CdS NCP films, leading to an enhancement in their isotropic nature. The Cr2O3 NPs were found to be more effective in changing the band gap energy and refractive index due to the presence of excess oxygen atoms that help with the oxygen atoms of the carbonyl group in increasing the chance of covalent bonds formation between the NPs and the PC-PBT blend. Moreover, the color intensity, ΔE has been computed; results show that both the two synthesized NCPs have a response to color alteration by γ irradiation, but the PC-PBT/Cr2O3 has a more response since the values of ΔE achieved a significant color difference >5 which is an acceptable match in commercial reproduction on printing presses. According to the resulting enhancement in the optical characteristics of the developed NCPs, they can be a suitable candidate as activate materials in optoelectronic devices, or shielding sheets for solar cells.


2019 ◽  
Vol 629 ◽  
pp. A112 ◽  
Author(s):  
B. M. Giuliano ◽  
A. A. Gavdush ◽  
B. Müller ◽  
K. I. Zaytsev ◽  
T. Grassi ◽  
...  

Context. Reliable, directly measured optical properties of astrophysical ice analogues in the infrared and terahertz (THz) range are missing from the literature. These parameters are of great importance to model the dust continuum radiative transfer in dense and cold regions, where thick ice mantles are present, and are necessary for the interpretation of future observations planned in the far-infrared region. Aims. Coherent THz radiation allows for direct measurement of the complex dielectric function (refractive index) of astrophysically relevant ice species in the THz range. Methods. We recorded the time-domain waveforms and the frequency-domain spectra of reference samples of CO ice, deposited at a temperature of 28.5 K and annealed to 33 K at different thicknesses. We developed a new algorithm to reconstruct the real and imaginary parts of the refractive index from the time-domain THz data. Results. The complex refractive index in the wavelength range 1 mm–150 μm (0.3–2.0 THz) was determined for the studied ice samples, and this index was compared with available data found in the literature. Conclusions. The developed algorithm of reconstructing the real and imaginary parts of the refractive index from the time-domain THz data enables us, for the first time, to determine the optical properties of astrophysical ice analogues without using the Kramers–Kronig relations. The obtained data provide a benchmark to interpret the observational data from current ground-based facilities as well as future space telescope missions, and we used these data to estimate the opacities of the dust grains in presence of CO ice mantles.


Sign in / Sign up

Export Citation Format

Share Document