scholarly journals Arctic smoke – aerosol characteristics during a record smoke event in the European Arctic and its radiative impact

2007 ◽  
Vol 7 (11) ◽  
pp. 3035-3053 ◽  
Author(s):  
R. Treffeisen ◽  
P. Tunved ◽  
J. Ström ◽  
A. Herber ◽  
J. Bareiss ◽  
...  

Abstract. In early May 2006 a record high air pollution event was observed at Ny-Ålesund, Spitsbergen. An atypical weather pattern established a pathway for the rapid transport of biomass burning aerosols from agricultural fires in Eastern Europe to the Arctic. Atmospheric stability was such that the smoke was constrained to low levels, within 2 km of the surface during the transport. A description of this smoke event in terms of transport and main aerosol characteristics can be found in Stohl et al. (2007). This study puts emphasis on the radiative effect of the smoke. The aerosol number size distribution was characterised by lognormal parameters as having an accumulation mode centered around 165–185 nm and almost 1.6 for geometric standard deviation of the mode. Nucleation and small Aitken mode particles were almost completely suppressed within the smoke plume measured at Ny-Ålesund. Chemical and microphysical aerosol information obtained at Mt. Zeppelin (474 m a.s.l) was used to derive input parameters for a one-dimensional radiation transfer model to explore the radiative effects of the smoke. The daily mean heating rate calculated on 2 May 2006 for the average size distribution and measured chemical composition reached 0.55 K day−1 at 0.5 km altitude for the assumed external mixture of the aerosols but showing much higher heating rates for an internal mixture (1.7 K day−1). In comparison a case study for March 2000 showed that the local climatic effects due to Arctic haze, using a regional climate model, HIRHAM, amounts to a maximum of 0.3 K day−1 of heating at 2 km altitude (Treffeisen et al., 2005).

2007 ◽  
Vol 7 (1) ◽  
pp. 2275-2324 ◽  
Author(s):  
R. Treffeisen ◽  
P. Turnved ◽  
J. Ström ◽  
A. Herber ◽  
J. Bareiss ◽  
...  

Abstract. In early May 2006 a record high air pollution event was observed at Ny-Ålesund, Spitsbergen. An atypical weather pattern established a pathway for the rapid transport of biomass burning aerosols from agricultural fires in Eastern Europe to the Arctic. Atmospheric stability was such that the smoke was constrained to low levels, within 2 km of the surface during the transport. A description of this smoke event in terms of transport and main aerosol characteristics can be found in Stohl et al. (2007). This study puts emphasis on the radiative effect of the smoke. The aerosol size distribution was characterized as having an accumulation mode centered at 165–185 nm and almost 1.6 for geometric standard deviation of the mode. Nucleation and small Aitken mode particles were almost completely suppressed within the smoke plume measured at Ny-Ålesund. Chemical and microphysical aerosol information obtained at Mt. Zeppelin (474 m.a.s.l) was used to derive input parameters for a one-dimensional radiation transfer model to explore the radiative effects of the smoke. The daily mean heating rate calculated on 2 May 2006 for the average size distribution and measured chemical composition reached 0.55 K day−1 at 0.5 km altitude for the assumed external mixture of the aerosols but showing much higher heating rates for an internal mixture (1.7 K day−1). In comparison a case study for March 2000 showed that the local climatic effects due to Arctic haze, using a regional climate model, HIRHAM, amounts to a maximum of 0.3 K day−1 of heating at 2 km altitude (Treffeisen et al., 2005).


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 174
Author(s):  
Günther Heinemann ◽  
Sascha Willmes ◽  
Lukas Schefczyk ◽  
Alexander Makshtas ◽  
Vasilii Kustov ◽  
...  

The parameterization of ocean/sea-ice/atmosphere interaction processes is a challenge for regional climate models (RCMs) of the Arctic, particularly for wintertime conditions, when small fractions of thin ice or open water cause strong modifications of the boundary layer. Thus, the treatment of sea ice and sub-grid flux parameterizations in RCMs is of crucial importance. However, verification data sets over sea ice for wintertime conditions are rare. In the present paper, data of the ship-based experiment Transarktika 2019 during the end of the Arctic winter for thick one-year ice conditions are presented. The data are used for the verification of the regional climate model COSMO-CLM (CCLM). In addition, Moderate Resolution Imaging Spectroradiometer (MODIS) data are used for the comparison of ice surface temperature (IST) simulations of the CCLM sea ice model. CCLM is used in a forecast mode (nested in ERA5) for the Norwegian and Barents Seas with 5 km resolution and is run with different configurations of the sea ice model and sub-grid flux parameterizations. The use of a new set of parameterizations yields improved results for the comparisons with in-situ data. Comparisons with MODIS IST allow for a verification over large areas and show also a good performance of CCLM. The comparison with twice-daily radiosonde ascents during Transarktika 2019, hourly microwave water vapor measurements of first 5 km in the atmosphere and hourly temperature profiler data show a very good representation of the temperature, humidity and wind structure of the whole troposphere for CCLM.


2012 ◽  
Vol 12 (21) ◽  
pp. 10545-10567 ◽  
Author(s):  
P. Nabat ◽  
F. Solmon ◽  
M. Mallet ◽  
J. F. Kok ◽  
S. Somot

Abstract. The present study investigates the dust emission and load over the Mediterranean basin using the coupled chemistry–aerosol–regional climate model RegCM-4. The first step of this work focuses on dust particle emission size distribution modeling. We compare a parameterization in which the emission is based on the individual kinetic energy of the aggregates striking the surface to a recent parameterization based on an analogy with the fragmentation of brittle materials. The main difference between the two dust schemes concerns the mass proportion of fine aerosol that is reduced in the case of the new dust parameterization, with consequences for optical properties. At the episodic scale, comparisons between RegCM-4 simulations, satellite and ground-based data show a clear improvement using the new dust distribution in terms of aerosol optical depth (AOD) values and geographic gradients. These results are confirmed at the seasonal scale for the investigated year 2008. This change of dust distribution has sensitive impacts on the simulated regional dust budget, notably dry dust deposition and the regional direct aerosol radiative forcing over the Mediterranean basin. In particular, we find that the new size distribution produces a higher dust deposition flux, and smaller top of atmosphere (TOA) dust radiative cooling. A multi-annual simulation is finally carried out using the new dust distribution over the period 2000–2009. The average SW radiative forcing over the Mediterranean Sea reaches −13.6 W m−2 at the surface, and −5.5 W m−2 at TOA. The LW radiative forcing is positive over the basin: 1.7 W m−2 on average over the Mediterranean Sea at the surface, and 0.6 W m−2 at TOA.


2005 ◽  
Vol 18 (13) ◽  
pp. 2515-2530 ◽  
Author(s):  
Tido Semmler ◽  
Daniela Jacob ◽  
K. Heinke Schlünzen ◽  
Ralf Podzun

Abstract The Arctic plays a major role in the global circulation, and its water and energy budget is not as well explored as that in other regions of the world. The aim of this study is to calculate the climatological mean water and energy fluxes depending on the season and on the North Atlantic Oscillation (NAO) through the lower, lateral, and upper boundaries of the Arctic atmosphere north of 70°N. The relevant fluxes are derived from results of the regional climate model (REMO 5.1), which is applied to the Arctic region for the time period 1979–2000. Model forcing data are a combination of 15-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-15) data and analysis data. The annual and seasonal total water and energy fluxes derived from REMO 5.1 results are very similar to the fluxes calculated from observational and reanalysis data, although there are some differences in the components. The agreement between simulated and observed total fluxes shows that these fluxes are reliable. Even if differences between high and low NAO situations occur in our simulation consistent with previous studies, these differences are mostly smaller than the large uncertainties due to a small sample size of the NAO high and low composites.


2015 ◽  
Vol 15 (22) ◽  
pp. 13195-13216 ◽  
Author(s):  
G. Alexandri ◽  
A. K. Georgoulias ◽  
P. Zanis ◽  
E. Katragkou ◽  
A. Tsikerdekis ◽  
...  

Abstract. In this work, we assess the ability of RegCM4 regional climate model to simulate surface solar radiation (SSR) patterns over Europe. A decadal RegCM4 run (2000–2009) was implemented and evaluated against satellite-based observations from the Satellite Application Facility on Climate Monitoring (CM SAF), showing that the model simulates adequately the SSR patterns over the region. The SSR bias between RegCM4 and CM SAF is +1.5 % for MFG (Meteosat First Generation) and +3.3 % for MSG (Meteosat Second Generation) observations. The relative contribution of parameters that determine the transmission of solar radiation within the atmosphere to the deviation appearing between RegCM4 and CM SAF SSR is also examined. Cloud macrophysical and microphysical properties such as cloud fractional cover (CFC), cloud optical thickness (COT) and cloud effective radius (Re) from RegCM4 are evaluated against data from CM SAF. Generally, RegCM4 underestimates CFC by 24.3 % and Re for liquid/ice clouds by 36.1 %/28.3 % and overestimates COT by 4.3 %. The same procedure is repeated for aerosol optical properties such as aerosol optical depth (AOD), asymmetry factor (ASY) and single-scattering albedo (SSA), as well as other parameters, including surface broadband albedo (ALB) and water vapor amount (WV), using data from MACv1 aerosol climatology, from CERES satellite sensors and from ERA-Interim reanalysis. It is shown here that the good agreement between RegCM4 and satellite-based SSR observations can be partially attributed to counteracting effects among the above mentioned parameters. The potential contribution of each parameter to the RegCM4–CM SAF SSR deviations is estimated with the combined use of the aforementioned data and a radiative transfer model (SBDART). CFC, COT and AOD are the major determinants of these deviations on a monthly basis; however, the other parameters also play an important role for specific regions and seasons. Overall, for the European domain, CFC, COT and AOD are the most important factors, since their underestimations and overestimations by RegCM4 cause an annual RegCM4–CM SAF SSR absolute deviation of 8.4, 3.8 and 4.5 %, respectively.


2021 ◽  
Author(s):  
Carolina Viceto ◽  
Irina V. Gorodetskaya ◽  
Annette Rinke ◽  
Marion Maturilli ◽  
Alfredo Rocha ◽  
...  

Abstract. Recently, a significant increase in the moisture content has been documented over the Arctic, where both local contributions and poleward moisture transport from lower latitudes can play a role. This study focuses on the anomalous moisture transport events confined to long and narrow corridors, known as atmospheric rivers (ARs) which are expected to have a strong influence on Arctic moisture amounts, precipitation and energy budget. During the two concerted intensive measurement campaigns, Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) and the Physical feedbacks of Arctic planetary boundary layer, Sea ice, Cloud and AerosoL (PASCAL), which took place from May 22 to June 28, 2017, at and near Svalbard, three high water vapour transport events were identified as ARs, based on two tracking algorithms: on 30 May, 6 and 9 June. We explore in detail the temporal and spatial evolution of the events identified as ARs and the associated precipitation patterns, using measurements from the AWIPEV research station in Ny-Ålesund, satellite-borne measurements, several reanalysis products (ERA5, ERA-Interim, MERRA-2, CFSv2 and JRA-55) and HIRHAM5 regional climate model. Results show that the tracking algorithms detected the events differently partly due to differences in spatial resolution, ranging from 0.25 to 1.25 degree, in temporal resolution, ranging from 1 hour to 6 hours, and in the criteria used in the tracking algorithms. Despite being consecutive, these events showed different synoptic evolution and precipitation characteristics. The first event extended from western Siberia to Svalbard, causing mixed-phase precipitation and was associated with a retreat of the sea-ice edge. The second event a week later had a similar trajectory and most precipitation occurred as rain, although in some areas mixed-phase precipitation or only snowfall occurred, mainly over the north-eastern Greenland’s coast and northeast of Iceland and no differences were noted in the sea-ice edge. The third event showed a different pathway extending from north-eastern Atlantic towards Greenland, and then turning southeastward reaching Svalbard. This last AR caused high precipitation amounts in the east coast of Greenland in the form of rain and snow and showed no precipitation in Svalbard region. The vertical profiles of specific humidity show layers of enhanced moisture, simultaneously with dry layers during the first two events, which were not captured by all reanalysis datasets, while the model misrepresented the entire vertical profiles. Regarding the wind speed, there was an increase of values with height during the first and last events, while during the second event there were no major changes in the wind speed. The accuracy of the representation of wind speed by the reanalyses and the model depended on the event. This study shows the importance of both the Atlantic and Siberian pathways of ARs during spring-beginning of summer in the Arctic, AR-associated strong heat and moisture increase as well as precipitation phase transition, and the need of using high spatiotemporal resolution datasets when studying these intense short duration events.


2021 ◽  
Vol 17 (4) ◽  
pp. 1685-1699
Author(s):  
Marcus Breil ◽  
Emanuel Christner ◽  
Alexandre Cauquoin ◽  
Martin Werner ◽  
Melanie Karremann ◽  
...  

Abstract. In order to investigate the impact of spatial resolution on the discrepancy between simulated δ18O and observed δ18O in Greenland ice cores, regional climate simulations are performed with the isotope-enabled regional climate model (RCM) COSMO_iso. For this purpose, isotope-enabled general circulation model (GCM) simulations with the ECHAM5-wiso general circulation model (GCM) under present-day conditions and the MPI-ESM-wiso GCM under mid-Holocene conditions are dynamically downscaled with COSMO_iso for the Arctic region. The capability of COSMO_iso to reproduce observed isotopic ratios in Greenland ice cores for these two periods is investigated by comparing the simulation results to measured δ18O ratios from snow pit samples, Global Network of Isotopes in Precipitation (GNIP) stations and ice cores. To our knowledge, this is the first time that a mid-Holocene isotope-enabled RCM simulation is performed for the Arctic region. Under present-day conditions, a dynamical downscaling of ECHAM5-wiso (1.1∘×1.1∘) with COSMO_iso to a spatial resolution of 50 km improves the agreement with the measured δ18O ratios for 14 of 19 observational data sets. A further increase in the spatial resolution to 7 km does not yield substantial improvements except for the coastal areas with its complex terrain. For the mid-Holocene, a fully coupled MPI-ESM-wiso time slice simulation is downscaled with COSMO_iso to a spatial resolution of 50 km. In the mid-Holocene, MPI-ESM-wiso already agrees well with observations in Greenland and a downscaling with COSMO_iso does not further improve the model–data agreement. Despite this lack of improvement in model biases, the study shows that in both periods, observed δ18O values at measurement sites constitute isotope ratios which are mainly within the subgrid-scale variability of the global ECHAM5-wiso and MPI-ESM-wiso simulation results. The correct δ18O ratios are consequently not resolved in the GCM simulation results and need to be extracted by a refinement with an RCM. In this context, the RCM simulations provide a spatial δ18O distribution by which the effects of local uncertainties can be taken into account in the comparison between point measurements and model outputs. Thus, an isotope-enabled GCM–RCM model chain with realistically implemented fractionating processes constitutes a useful supplement to reconstruct regional paleo-climate conditions during the mid-Holocene in Greenland. Such model chains might also be applied to reveal the full potential of GCMs in other regions and climate periods, in which large deviations relative to observed isotope ratios are simulated.


2022 ◽  
Vol 22 (1) ◽  
pp. 441-463
Author(s):  
Carolina Viceto ◽  
Irina V. Gorodetskaya ◽  
Annette Rinke ◽  
Marion Maturilli ◽  
Alfredo Rocha ◽  
...  

Abstract. Recently, a significant increase in the atmospheric moisture content has been documented over the Arctic, where both local contributions and poleward moisture transport from lower latitudes can play a role. This study focuses on the anomalous moisture transport events confined to long and narrow corridors, known as atmospheric rivers (ARs), which are expected to have a strong influence on Arctic moisture amounts, precipitation, and the energy budget. During two concerted intensive measurement campaigns – Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) and the Physical feedbacks of Arctic planetary boundary layer, Sea ice, Cloud and AerosoL (PASCAL) – that took place at and near Svalbard, three high-water-vapour-transport events were identified as ARs, based on two tracking algorithms: the 30 May event, the 6 June event, and the 9 June 2017 event. We explore the temporal and spatial evolution of the events identified as ARs and the associated precipitation patterns in detail using measurements from the French (Polar Institute Paul Emile Victor) and German (Alfred Wegener Institute for Polar and Marine Research) Arctic Research Base (AWIPEV) in Ny-Ålesund, satellite-borne measurements, several reanalysis products (the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA) Interim (ERA-Interim); the ERA5 reanalysis; the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2); the Climate Forecast System version 2 (CFSv2); and the Japanese 55-Year Reanalysis (JRA-55)), and the HIRHAM regional climate model version 5 (HIRHAM5). Results show that the tracking algorithms detected the events differently, which is partly due to differences in the spatial and temporal resolution as well as differences in the criteria used in the tracking algorithms. The first event extended from western Siberia to Svalbard, caused mixed-phase precipitation, and was associated with a retreat of the sea-ice edge. The second event, 1 week later, had a similar trajectory, and most precipitation occurred as rain, although mixed-phase precipitation or only snowfall occurred in some areas, mainly over the coast of north-eastern Greenland and the north-east of Iceland, and no differences were noted in the sea-ice edge. The third event showed a different pathway extending from the north-eastern Atlantic towards Greenland before turning south-eastward and reaching Svalbard. This last AR caused high precipitation amounts on the east coast of Greenland in the form of rain and snow and showed no precipitation in the Svalbard region. The vertical profiles of specific humidity show layers of enhanced moisture that were concurrent with dry layers during the first two events and that were not captured by all of the reanalysis datasets, whereas the HIRHAM5 model misrepresented humidity at all vertical levels. There was an increase in wind speed with height during the first and last events, whereas there were no major changes in the wind speed during the second event. The accuracy of the representation of wind speed by the reanalyses and the model depended on the event. The objective of this paper was to build knowledge from detailed AR case studies, with the purpose of performing long-term analysis. Thus, we adapted a regional AR detection algorithm to the Arctic and analysed how well it identified ARs, we used different datasets (observational, reanalyses, and model) and identified the most suitable dataset, and we analysed the evolution of the ARs and their impacts in terms of precipitation. This study shows the importance of the Atlantic and Siberian pathways of ARs during spring and beginning of summer in the Arctic; the significance of the AR-associated strong heat increase, moisture increase, and precipitation phase transition; and the requirement for high-spatio-temporal-resolution datasets when studying these intense short-duration events.


Sign in / Sign up

Export Citation Format

Share Document