scholarly journals The Water and Energy Budget of the Arctic Atmosphere

2005 ◽  
Vol 18 (13) ◽  
pp. 2515-2530 ◽  
Author(s):  
Tido Semmler ◽  
Daniela Jacob ◽  
K. Heinke Schlünzen ◽  
Ralf Podzun

Abstract The Arctic plays a major role in the global circulation, and its water and energy budget is not as well explored as that in other regions of the world. The aim of this study is to calculate the climatological mean water and energy fluxes depending on the season and on the North Atlantic Oscillation (NAO) through the lower, lateral, and upper boundaries of the Arctic atmosphere north of 70°N. The relevant fluxes are derived from results of the regional climate model (REMO 5.1), which is applied to the Arctic region for the time period 1979–2000. Model forcing data are a combination of 15-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-15) data and analysis data. The annual and seasonal total water and energy fluxes derived from REMO 5.1 results are very similar to the fluxes calculated from observational and reanalysis data, although there are some differences in the components. The agreement between simulated and observed total fluxes shows that these fluxes are reliable. Even if differences between high and low NAO situations occur in our simulation consistent with previous studies, these differences are mostly smaller than the large uncertainties due to a small sample size of the NAO high and low composites.

2021 ◽  
Vol 17 (4) ◽  
pp. 1685-1699
Author(s):  
Marcus Breil ◽  
Emanuel Christner ◽  
Alexandre Cauquoin ◽  
Martin Werner ◽  
Melanie Karremann ◽  
...  

Abstract. In order to investigate the impact of spatial resolution on the discrepancy between simulated δ18O and observed δ18O in Greenland ice cores, regional climate simulations are performed with the isotope-enabled regional climate model (RCM) COSMO_iso. For this purpose, isotope-enabled general circulation model (GCM) simulations with the ECHAM5-wiso general circulation model (GCM) under present-day conditions and the MPI-ESM-wiso GCM under mid-Holocene conditions are dynamically downscaled with COSMO_iso for the Arctic region. The capability of COSMO_iso to reproduce observed isotopic ratios in Greenland ice cores for these two periods is investigated by comparing the simulation results to measured δ18O ratios from snow pit samples, Global Network of Isotopes in Precipitation (GNIP) stations and ice cores. To our knowledge, this is the first time that a mid-Holocene isotope-enabled RCM simulation is performed for the Arctic region. Under present-day conditions, a dynamical downscaling of ECHAM5-wiso (1.1∘×1.1∘) with COSMO_iso to a spatial resolution of 50 km improves the agreement with the measured δ18O ratios for 14 of 19 observational data sets. A further increase in the spatial resolution to 7 km does not yield substantial improvements except for the coastal areas with its complex terrain. For the mid-Holocene, a fully coupled MPI-ESM-wiso time slice simulation is downscaled with COSMO_iso to a spatial resolution of 50 km. In the mid-Holocene, MPI-ESM-wiso already agrees well with observations in Greenland and a downscaling with COSMO_iso does not further improve the model–data agreement. Despite this lack of improvement in model biases, the study shows that in both periods, observed δ18O values at measurement sites constitute isotope ratios which are mainly within the subgrid-scale variability of the global ECHAM5-wiso and MPI-ESM-wiso simulation results. The correct δ18O ratios are consequently not resolved in the GCM simulation results and need to be extracted by a refinement with an RCM. In this context, the RCM simulations provide a spatial δ18O distribution by which the effects of local uncertainties can be taken into account in the comparison between point measurements and model outputs. Thus, an isotope-enabled GCM–RCM model chain with realistically implemented fractionating processes constitutes a useful supplement to reconstruct regional paleo-climate conditions during the mid-Holocene in Greenland. Such model chains might also be applied to reveal the full potential of GCMs in other regions and climate periods, in which large deviations relative to observed isotope ratios are simulated.


2021 ◽  
pp. 1-43
Author(s):  
Weina Guan ◽  
Xianan Jiang ◽  
Xuejuan Ren ◽  
Gang Chen ◽  
Qinghua Ding

AbstractThe leading interannual mode of winter surface air temperature over the North American (NA) sector, characterized by a “Warm Arctic, Cold Continents” (WACC) pattern, exerts pronounced influences on NA weather and climate, while its underlying mechanisms remain elusive. In this study, the relative roles of surface boundary forcing versus internal atmospheric processes for the formation of the WACC pattern are quantitatively investigated using a combined analysis of observations and large-ensemble atmospheric global climate model simulations. Internal atmospheric variability is found to play an important role in shaping the year-to-year WACC variability, contributing to about half of the total variance. An anomalous SST pattern resembling the North Pacific Mode is identified as a major surface boundary forcing pattern in driving the interannual WACC variability over the NA sector, with a minor contribution from sea ice variability over the Chukchi- Bering Seas. Findings from this study not only lead to improved understanding of underlying physics regulating the interannual WACC variability, but also provide important guidance for improved modeling and prediction of regional climate variability over NA and the Arctic region.


1996 ◽  
Vol 101 (D18) ◽  
pp. 23401-23422 ◽  
Author(s):  
Klaus Dethloff ◽  
Annette Rinke ◽  
Ralph Lehmann ◽  
Jens H. Christensen ◽  
Michael Botzet ◽  
...  

2020 ◽  
Author(s):  
Marcus Breil ◽  
Emanuel Christner ◽  
Alexandre Cauquoin ◽  
Martin Werner ◽  
Gerd Schädler

Abstract. In this study, regional climate simulations under present-day and mid-Holocene conditions are performed with an isotope-enabled RCM for Greenland. The capability of the applied isotope-enabled Regional Climate Model (RCM), COSMO_iso, to reproduce observed isotopic ratios in Greenland for these two periods is investigated by downscaling global ECHAM5-wiso present-day and MPI-ESM-wiso mid-Holocene simulations for the Arctic region. The RCM model results are subsequently compared to measured δ18O ratios from snow pit samples and ice cores. To our knowledge, this is the first time that a mid-Holocene isotope-enabled RCM simulation is performed for the Arctic region. Under present-day conditions, a downscaling with COSMO_iso to a spatial resolution of 50 km improves the agreement with the measured δ18O ratios for 11 of 16 observational data sets. A further increase in the spatial resolution to 7 km yield only improvements for the coastal areas with its complex terrain. Furthermore, by investigating the δ18O ratios in all COSMO_iso grid boxes located within the corresponding ECHAM5-wiso grid box, the observed isotopic ratios can be classified as a possible local δ18O ratio within the spatial uncertainties, derived by the regional downscaling approach. For the mid-Holocene, a fully coupled MPI-ESM-wiso time slice simulation is downscaled with COSMO_iso to a spatial resolution of 50 km. The model performance of MPI-ESM-wiso in the mid-Holocene is already on a high level for Greenland and a downscaling with COSMO_iso does not further improve the model-data agreement. But again, the range of the COSMO_iso_50km δ18O variability in the corresponding MPI-ESM-wiso grid boxes around each station is consistent with the observed δ18O values. The correct δ18O ratios are consequently already included but hidden in the MPI-ESM-wiso results, which just need to be extracted by a refinement with an RCM. Thus, an isotope-enabled GCM-RCM model chain with realistically implemented fractionating processes, constitutes a useful supplement to reconstruct regional paleo-climate conditions during the mid-Holocene in Greenland. Such model chains might also be applied to reveal the full potential of GCMs in regions and climate periods, in which large deviations to observed isotope ratios are simulated.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 174
Author(s):  
Günther Heinemann ◽  
Sascha Willmes ◽  
Lukas Schefczyk ◽  
Alexander Makshtas ◽  
Vasilii Kustov ◽  
...  

The parameterization of ocean/sea-ice/atmosphere interaction processes is a challenge for regional climate models (RCMs) of the Arctic, particularly for wintertime conditions, when small fractions of thin ice or open water cause strong modifications of the boundary layer. Thus, the treatment of sea ice and sub-grid flux parameterizations in RCMs is of crucial importance. However, verification data sets over sea ice for wintertime conditions are rare. In the present paper, data of the ship-based experiment Transarktika 2019 during the end of the Arctic winter for thick one-year ice conditions are presented. The data are used for the verification of the regional climate model COSMO-CLM (CCLM). In addition, Moderate Resolution Imaging Spectroradiometer (MODIS) data are used for the comparison of ice surface temperature (IST) simulations of the CCLM sea ice model. CCLM is used in a forecast mode (nested in ERA5) for the Norwegian and Barents Seas with 5 km resolution and is run with different configurations of the sea ice model and sub-grid flux parameterizations. The use of a new set of parameterizations yields improved results for the comparisons with in-situ data. Comparisons with MODIS IST allow for a verification over large areas and show also a good performance of CCLM. The comparison with twice-daily radiosonde ascents during Transarktika 2019, hourly microwave water vapor measurements of first 5 km in the atmosphere and hourly temperature profiler data show a very good representation of the temperature, humidity and wind structure of the whole troposphere for CCLM.


2007 ◽  
Vol 88 (3) ◽  
pp. 375-384 ◽  
Author(s):  
E. S. Takle ◽  
J. Roads ◽  
B. Rockel ◽  
W. J. Gutowski ◽  
R. W. Arritt ◽  
...  

A new approach, called transferability intercomparisons, is described for advancing both understanding and modeling of the global water cycle and energy budget. Under this approach, individual regional climate models perform simulations with all modeling parameters and parameterizations held constant over a specific period on several prescribed domains representing different climatic regions. The transferability framework goes beyond previous regional climate model intercomparisons to provide a global method for testing and improving model parameterizations by constraining the simulations within analyzed boundaries for several domains. Transferability intercomparisons expose the limits of our current regional modeling capacity by examining model accuracy on a wide range of climate conditions and realizations. Intercomparison of these individual model experiments provides a means for evaluating strengths and weaknesses of models outside their “home domains” (domain of development and testing). Reference sites that are conducting coordinated measurements under the continental-scale experiments under the Global Energy and Water Cycle Experiment (GEWEX) Hydrometeorology Panel provide data for evaluation of model abilities to simulate specific features of the water and energy cycles. A systematic intercomparison across models and domains more clearly exposes collective biases in the modeling process. By isolating particular regions and processes, regional model transferability intercomparisons can more effectively explore the spatial and temporal heterogeneity of predictability. A general improvement of model ability to simulate diverse climates will provide more confidence that models used for future climate scenarios might be able to simulate conditions on a particular domain that are beyond the range of previously observed climates.


2020 ◽  
Author(s):  
Christiaan T. van Dalum ◽  
Willem Jan van de Berg ◽  
Michiel R. van den Broeke

Abstract. This study evaluates the impact of a new snow and ice albedo and radiative transfer scheme on the surface mass and energy budget for the Greenland ice sheet in the latest version of the regional climate model RACMO2, version 2.3p3. We also evaluate the modeled (sub)surface temperature and snow melt, as subsurface heating by radiation penetration now occurs. The results are compared to the previous model version and are evaluated against stake measurements and automatic weather station data of the K-transect and PROMICE projects. In addition, subsurface snow temperature profiles are compared at the K-transect, Summit and southeast Greenland. The surface mass balance is in good agreement with observations, and only changes considerably with respect to the previous RACMO2 version around the ice margins and in the percolation zone. Snow melt and refreezing, on the other hand, are changed more substantially in various regions due to the changed albedo representation, subsurface energy absorption and melt water percolation. Internal heating leads to considerably higher snow temperatures in summer, in agreement with observations, and introduces a shallow layer of subsurface melt.


2008 ◽  
Vol 21 (5) ◽  
pp. 963-979 ◽  
Author(s):  
Yoo-Bin Yhang ◽  
Song-You Hong

Abstract This paper documents the sensitivity of the modeled evolution of the East Asian summer monsoon (EASM) to physical parameterization using the National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM). To this end, perfect boundary condition experiments driven by analysis data are designed for August 2003 to investigate the individual role of the surface processes, boundary layer, and convection parameterization on the simulated monsoon. Also, 10-yr June–August (JJA) simulations from 1996 to 2005 are performed to evaluate the overall impacts of these revisions on the simulated EASM climatology. The one-month simulation for August 2003 reveals that the experiment with a realistic distribution of land use conditions and vegetation and smaller thermal roughness length simulates higher temperature and geopotential height. On the other hand, in the experiment with an improved boundary layer scheme, the rainfall amount is slightly decreased due to reduced vertical mixing. The simulation with revised subgrid-scale processes in the cumulus parameterization scheme reproduces a rainband over the subtropics, which is weakly simulated by the default package. The overall large-scale distribution from the experiment, which includes all three revised physics processes, shows the same direction as that of the revised convection run in the middle and upper troposphere, but is improved further when other newly enhanced processes are combined. These improvements are also achieved in a 10-yr summer simulation. It is distinct that the revised physics package improves the large-scale patterns by strengthening the intensity of the North Pacific high and reducing the intensity of the lower-level jet, which are critical components in the EASM. The general patterns of the interannual and intraseasonal variation of precipitation are also improved, in particular, over land.


2018 ◽  
Vol 16 (2) ◽  
pp. 127-146 ◽  
Author(s):  
Tomer Einat ◽  
Moran Davidian

This study examines the ways in which the prison service handles food and analyses the uses and meanings of food in prison subculture. Using semi-structured interviews and content analysis, data were collected and analysed from 20 ex-prisoners who were incarcerated in maximum-security prison facilities for a period of three years or more. Our main findings are that, according to the interviewees’ testimonies, (a) the Israel Prison Service (IPS) makes manipulative and abusive use of food in order to perpetuate its power; and (b) food serves as a means to determine the relationship between prisoners and staff, govern social status or rejection in the prison subculture, or pass the time. We have four main conclusions. First, the IPS nutrition policy differentiates and discriminates among prisoners and clearly violates the basic human rights of prisoners, thus suggesting an abuse of power. Second, the IPS’s use of food as a tool for punishing or rewarding introduces and perpetuates inequalities and encourages the illegal prison trade in food and food products. Third, cooking in prison, especially in light of its illegality, constitutes a symbolic expression of resistance to the institution and a meaningful way of coping with boredom. Lastly, food and its possession in prison serve as very powerful tools for constructing and perpetuating exploitation and unequal power relations among prisoners. Although the study suffers from two limitations – the validity of the adolescents’ responses and the small sample size – its findings lead us to propose that an improvement in the food products that are accessible to prisoners and permission to cook in their cells are inexpensive and legitimate means of bettering both the prisoners’ quality of life and the social atmosphere in prison.


2017 ◽  
Vol 866 ◽  
pp. 108-111
Author(s):  
Theerapan Saesong ◽  
Pakpoom Ratjiranukool ◽  
Sujittra Ratjiranukool

Numerical Weather Model called The Weather Research and Forecasting model, WRF, developed by National Center for Atmospheric Research (NCAR) is adapted to be regional climate model. The model is run to perform the daily mean air surface temperatures over northern Thailand in 2010. Boundery dataset provided by National Centers for Environmental Prediction, NCEP FNL, (Final) Operational Global Analysis data which are on 10 x 10. The simulated temperatures by WRF with four land surface options, i.e., no land surface scheme (option 0), thermal diffusion (option 1), Noah land-surface (option 2) and RUC land-surface (option 3) were compared against observational data from Thai Meteorological Department (TMD). Preliminary analysis indicated WRF simulations with Noah scheme were able to reproduce the most reliable daily mean temperatures over northern Thailand.


Sign in / Sign up

Export Citation Format

Share Document