scholarly journals Identifying the sources driving observed PM<sub>2.5</sub> variability over Halifax, Nova Scotia, during BORTAS-B

2013 ◽  
Vol 13 (2) ◽  
pp. 4491-4533 ◽  
Author(s):  
M. D. Gibson ◽  
J. R. Pierce ◽  
D. Waugh ◽  
J. S. Kuchta ◽  
L. Chisholm ◽  
...  

Abstract. The source attribution of observed variability of total PM2.5 concentrations over Halifax, Nova Scotia was investigated between 11 July–26 August 2011 using measurements of PM2.5 mass and PM2.5 chemical composition (black carbon, organic matter, anions, cations and 33 elements). This was part of the BORTAS-B (quantifying the impact of BOReal forest fires on Tropospheric oxidants using aircraft and satellites) experiment, which investigated the atmospheric chemistry and transport of seasonal boreal wild fire emissions over eastern Canada in 2011. The US EPA Positive Matrix Factorization (PMF) receptor model was used to determine the average mass (percentage) source contribution over the 45 days, which was estimated to be: Long-Range Transport (LRT) Pollution 1.75 μg m−3 (47%), LRT Pollution Marine Mixture 1.0 μg m−3 (27.9%), Vehicles 0.49 μg m−3 (13.2%), Fugitive Dust 0.23 μg m−3 (6.3%), Ship Emissions 0.13 μg m−3 (3.4%) and Refinery 0.081 μg m−3 (2.2%). The PMF model describes 87% of the observed variability in total PM2.5 mass (bias = 0.17 and RSME = 1.5 μg m−3). The factor identifications are based on chemical markers, and they are supported by air mass back trajectory analysis and local wind direction. Biomass burning plumes, found by other surface and aircraft measurements, were not significant enough to be identified in this analysis. This paper presents the results of the PMF receptor modelling, providing valuable insight into the local and upwind sources impacting surface PM2.5 in Halifax during the BORTAS-B mission.

2013 ◽  
Vol 13 (14) ◽  
pp. 7199-7213 ◽  
Author(s):  
M. D. Gibson ◽  
J. R. Pierce ◽  
D. Waugh ◽  
J. S. Kuchta ◽  
L. Chisholm ◽  
...  

Abstract. The source attribution of observed variability of total PM2.5 concentrations over Halifax, Nova Scotia, was investigated between 11 July and 26 August 2011 using measurements of PM2.5 mass and PM2.5 chemical composition (black carbon, organic matter, anions, cations and 33 elements). This was part of the BORTAS-B (quantifying the impact of BOReal forest fires on Tropospheric oxidants using Aircraft and Satellites) experiment, which investigated the atmospheric chemistry and transport of seasonal boreal wildfire emissions over eastern Canada in 2011. The US EPA Positive Matrix Factorization (PMF) receptor model was used to determine the average mass (percentage) source contribution over the 45 days, which was estimated to be as follows: long-range transport (LRT) pollution: 1.75 μg m−3 (47%); LRT pollution marine mixture: 1.0 μg m−3 (27.9%); vehicles: 0.49 μg m−3 (13.2%); fugitive dust: 0.23 μg m−3 (6.3%); ship emissions: 0.13 μg m−3 (3.4%); and refinery: 0.081 μg m−3 (2.2%). The PMF model describes 87% of the observed variability in total PM2.5 mass (bias = 0.17 and RSME = 1.5 μg m−3). The factor identifications are based on chemical markers, and they are supported by air mass back trajectory analysis and local wind direction. Biomass burning plumes, found by other surface and aircraft measurements, were not significant enough to be identified in this analysis. This paper presents the results of the PMF receptor modelling, providing valuable insight into the local and upwind sources impacting surface PM2.5 in Halifax and a vital comparative data set for the other collocated ground-based observations of atmospheric composition made during BORTAS-B.


2013 ◽  
Vol 13 (2) ◽  
pp. 4127-4181 ◽  
Author(s):  
P. I. Palmer ◽  
M. Parrington ◽  
J. D. Lee ◽  
A. C. Lewis ◽  
A. R. Rickard ◽  
...  

Abstract. We describe the design and execution of the BORTAS (Quantifying the impact of BOReal forest fires on Tropospheric oxidants using Aircraft and Satellites) experiment, which has the overarching objective of understanding the chemical aging of airmasses that contain the emission products from seasonal boreal wildfires and how these airmasses subsequently impact downwind atmospheric composition. The central focus of the experiment was a two-week deployment of the UK BAe-146-301 Atmospheric Research Aircraft (ARA) over eastern Canada. The planned July 2010 deployment of the ARA was postponed by 12 months because of activities related to the dispersal of material emitted by the Eyjafjallajökull volcano. However, most other planned model and measurement activities, including ground-based measurements at the Dalhousie University Ground Station (DGS), enhanced ozonesonde launches, and measurements at the Pico Atmospheric Observatory in the Azores, went ahead and constituted phase A of the experiment. Phase B of BORTAS in July 2011 included the same measurements, but included the ARA, special satellite observations and a more comprehensive measurement suite at the DGS. The high-frequency aircraft data provided a comprehensive snapshot of the pyrogenic plumes from wildfires. The coordinated ground-based and sonde data provided detailed but spatially-limited information that put the aircraft data into context of the longer burning season. We coordinated aircraft vertical profiles and overpasses of the NASA Tropospheric Emission Spectrometer and the Canadian Atmospheric Chemistry Experiment. These space-borne data, while less precise than other data, helped to relate the two-week measurement campaign to larger geographical and longer temporal scales. We interpret these data using a range of chemistry models: from a near-explicit gas-phase chemical mechanism, which tests out understanding of the underlying chemical mechanism, to regional and global 3-D models of atmospheric transport and lumped chemistry, which helps to assess the performance of the simplified chemical mechanism and effectively act as intermediaries between different measurement types. We also present an overview of some of the new science that has originated from this project from the mission planning and execution to the analysis of the ground-based, aircraft, and space-borne data.


2016 ◽  
Vol 16 (5) ◽  
pp. 3485-3497 ◽  
Author(s):  
Marcella Busilacchio ◽  
Piero Di Carlo ◽  
Eleonora Aruffo ◽  
Fabio Biancofiore ◽  
Cesare Dari Salisburgo ◽  
...  

Abstract. The observations collected during the BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) campaign in summer 2011 over Canada are analysed to study the impact of forest fire emissions on the formation of ozone (O3) and total peroxy nitrates ∑PNs, ∑ROONO2). The suite of measurements on board the BAe-146 aircraft, deployed in this campaign, allows us to calculate the production of O3 and of  ∑PNs, a long-lived NOx reservoir whose concentration is supposed to be impacted by biomass burning emissions. In fire plumes, profiles of carbon monoxide (CO), which is a well-established tracer of pyrogenic emission, show concentration enhancements that are in strong correspondence with a significant increase of concentrations of ∑PNs, whereas minimal increase of the concentrations of O3 and NO2 is observed. The ∑PN and O3 productions have been calculated using the rate constants of the first- and second-order reactions of volatile organic compound (VOC) oxidation. The ∑PN and O3 productions have also been quantified by 0-D model simulation based on the Master Chemical Mechanism. Both methods show that in fire plumes the average production of ∑PNs and O3 are greater than in the background plumes, but the increase of ∑PN production is more pronounced than the O3 production. The average ∑PN production in fire plumes is from 7 to 12 times greater than in the background, whereas the average O3 production in fire plumes is from 2 to 5 times greater than in the background. These results suggest that, at least for boreal forest fires and for the measurements recorded during the BORTAS campaign, fire emissions impact both the oxidized NOy and O3,  but (1 ∑PN production is amplified significantly more than O3 production and (2) in the forest fire plumes the ratio between the O3 production and the ∑PN production is lower than the ratio evaluated in the background air masses, thus confirming that the role played by the ∑PNs produced during biomass burning is significant in the O3 budget. The implication of these observations is that fire emissions in some cases, for example boreal forest fires and in the conditions reported here, may influence more long-lived precursors of O3 than short-lived pollutants, which in turn can be transported and eventually diluted in a wide area.


2016 ◽  
Vol 16 (20) ◽  
pp. 13185-13212 ◽  
Author(s):  
Owen B. Toon ◽  
Charles Bardeen ◽  
Rolando Garcia

Abstract. About 66 million years ago, an asteroid about 10 km in diameter struck the Yucatan Peninsula creating the Chicxulub crater. The crater has been dated and found to be coincident with the Cretaceous–Paleogene (K-Pg) mass extinction event, one of six great mass extinctions in the last 600 million years. This event precipitated one of the largest episodes of rapid climate change in Earth's history, yet no modern three-dimensional climate calculations have simulated the event. Similarly, while there is an ongoing effort to detect asteroids that might hit Earth and to develop methods to stop them, there have been no modern calculations of the sizes of asteroids whose impacts on land would cause devastating effects on Earth. Here, we provide the information needed to initialize such calculations for the K-Pg impactor and for a 1 km diameter impactor. There is considerable controversy about the details of the events that followed the Chicxulub impact. We proceed through the data record in the order of confidence that a climatically important material was present in the atmosphere. The climatic importance is roughly proportional to the optical depth of the material. Spherules with diameters of several hundred microns are found globally in an abundance that would have produced an atmospheric layer with an optical depth around 20, yet their large sizes would only allow them to stay airborne for a few days. They were likely important for triggering global wildfires. Soot, probably from global or near-global wildfires, is found globally in an abundance that would have produced an optical depth near 100, which would effectively prevent sunlight from reaching the surface. Nanometer-sized iron particles are also present globally. Theory suggests these particles might be remnants of the vaporized asteroid and target that initially remained as vapor rather than condensing on the hundred-micron spherules when they entered the atmosphere. If present in the greatest abundance allowed by theory, their optical depth would have exceeded 1000. Clastics may be present globally, but only the quartz fraction can be quantified since shock features can identify it. However, it is very difficult to determine the total abundance of clastics. We reconcile previous widely disparate estimates and suggest the clastics may have had an optical depth near 100. Sulfur is predicted to originate about equally from the impactor and from the Yucatan surface materials. By mass, sulfur is less than 10 % of the observed mass of the spheres and estimated mass of nanoparticles. Since the sulfur probably reacted on the surfaces of the soot, nanoparticles, clastics, and spheres, it is likely a minor component of the climate forcing; however, detailed studies of the conversion of sulfur gases to particles are needed to determine if sulfuric acid aerosols dominated in late stages of the evolution of the atmospheric debris. Numerous gases, including CO2, SO2 (or SO3), H2O, CO2, Cl, Br, and I, were likely injected into the upper atmosphere by the impact or the immediate effects of the impact such as fires across the planet. Their abundance might have increased relative to current ambient values by a significant fraction for CO2, and by factors of 100 to 1000 for the other gases. For the 1 km impactor, nanoparticles might have had an optical depth of 1.5 if the impact occurred on land. If the impactor struck a densely forested region, soot from the forest fires might have had an optical depth of 0.1. Only S and I would be expected to be perturbed significantly relative to ambient gas-phase values. One kilometer asteroids impacting the ocean may inject seawater into the stratosphere as well as halogens that are dissolved in the seawater. For each of the materials mentioned, we provide initial abundances and injection altitudes. For particles, we suggest initial size distributions and optical constants. We also suggest new observations that could be made to narrow the uncertainties about the particles and gases generated by large impacts.


2013 ◽  
Vol 13 (13) ◽  
pp. 6239-6261 ◽  
Author(s):  
P. I. Palmer ◽  
M. Parrington ◽  
J. D. Lee ◽  
A. C. Lewis ◽  
A. R. Rickard ◽  
...  

Abstract. We describe the design and execution of the BORTAS (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites) experiment, which has the overarching objective of understanding the chemical aging of air masses that contain the emission products from seasonal boreal wildfires and how these air masses subsequently impact downwind atmospheric composition. The central focus of the experiment was a two-week deployment of the UK BAe-146-301 Atmospheric Research Aircraft (ARA) over eastern Canada, based out of Halifax, Nova Scotia. Atmospheric ground-based and sonde measurements over Canada and the Azores associated with the planned July 2010 deployment of the ARA, which was postponed by 12 months due to UK-based flights related to the dispersal of material emitted by the Eyjafjallajökull volcano, went ahead and constituted phase A of the experiment. Phase B of BORTAS in July 2011 involved the same atmospheric measurements, but included the ARA, special satellite observations and a more comprehensive ground-based measurement suite. The high-frequency aircraft data provided a comprehensive chemical snapshot of pyrogenic plumes from wildfires, corresponding to photochemical (and physical) ages ranging from < 1 day to ~


2012 ◽  
Vol 12 (18) ◽  
pp. 8727-8750 ◽  
Author(s):  
Ø. Hodnebrog ◽  
S. Solberg ◽  
F. Stordal ◽  
T. M. Svendby ◽  
D. Simpson ◽  
...  

Abstract. The hot summer of 2007 in southeast Europe has been studied using two regional atmospheric chemistry models; WRF-Chem and EMEP MSC-W. The region was struck by three heat waves and a number of forest fire episodes, greatly affecting air pollution levels. We have focused on ozone and its precursors using state-of-the-art inventories for anthropogenic, biogenic and forest fire emissions. The models have been evaluated against measurement data, and processes leading to ozone formation have been quantified. Heat wave episodes are projected to occur more frequently in a future climate, and therefore this study also makes a contribution to climate change impact research. The plume from the Greek forest fires in August 2007 is clearly seen in satellite observations of CO and NO2 columns, showing extreme levels of CO in and downwind of the fires. Model simulations reflect the location and influence of the fires relatively well, but the modelled magnitude of CO in the plume core is too low. Most likely, this is caused by underestimation of CO in the emission inventories, suggesting that the CO/NOx ratios of fire emissions should be re-assessed. Moreover, higher maximum values are seen in WRF-Chem than in EMEP MSC-W, presumably due to differences in plume rise altitudes as the first model emits a larger fraction of the fire emissions in the lowermost model layer. The model results are also in fairly good agreement with surface ozone measurements. Biogenic VOC emissions reacting with anthropogenic NOx emissions are calculated to contribute significantly to the levels of ozone in the region, but the magnitude and geographical distribution depend strongly on the model and biogenic emission module used. During the July and August heat waves, ozone levels increased substantially due to a combination of forest fire emissions and the effect of high temperatures. We found that the largest temperature impact on ozone was through the temperature dependence of the biogenic emissions, closely followed by the effect of reduced dry deposition caused by closing of the plants' stomata at very high temperatures. The impact of high temperatures on the ozone chemistry was much lower. The results suggest that forest fire emissions, and the temperature effect on biogenic emissions and dry deposition, will potentially lead to substantial ozone increases in a warmer climate.


2010 ◽  
Vol 10 (12) ◽  
pp. 5315-5341 ◽  
Author(s):  
A. C. Aiken ◽  
B. de Foy ◽  
C. Wiedinmyer ◽  
P. F. DeCarlo ◽  
I. M. Ulbrich ◽  
...  

Abstract. Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Aerosol Mass Spectrometer (AMS) and complementary instrumentation. Positive Matrix Factorization (PMF) of high resolution AMS spectra identified a biomass burning organic aerosol (BBOA) component, which includes several large plumes that appear to be from forest fires within the region. Here, we show that the AMS BBOA concentration at T0 correlates with fire counts in the vicinity of Mexico City and that most of the BBOA variability is captured when the FLEXPART model is used for the dispersion of fire emissions as estimated from satellite fire counts. The resulting FLEXPART fire impact factor (FIF) correlates well with the observed BBOA, acetonitrile (CH3CN), levoglucosan, and potassium, indicating that wildfires in the region surrounding Mexico City are the dominant source of BBOA at T0 during MILAGRO. The impact of distant BB sources such as the Yucatan is small during this period. All fire tracers are correlated, with BBOA and levoglucosan showing little background, acetonitrile having a well-known tropospheric background of ~100–150 pptv, and PM2.5 potassium having a background of ~160 ng m−3 (two-thirds of its average concentration), which does not appear to be related to BB sources. We define two high fire periods based on satellite fire counts and FLEXPART-predicted FIFs. We then compare these periods with a low fire period when the impact of regional fires is about a factor of 5 smaller. Fire tracers are very elevated in the high fire periods whereas tracers of urban pollution do not change between these periods. Dust is also elevated during the high BB period but this appears to be coincidental due to the drier conditions and not driven by direct dust emission from the fires. The AMS oxygenated organic aerosol (OA) factor (OOA, mostly secondary OA or SOA) does not show an increase during the fire periods or a correlation with fire counts, FLEXPART-predicted FIFs or fire tracers, indicating that it is dominated by urban and/or regional sources and not by the fires near the MCMA. A new 14C aerosol dataset is presented. Both this new and a previously published dataset of 14C analysis suggest a similar BBOA contribution as the AMS and chemical mass balance (CMB), resulting in 13% higher non-fossil carbon during the high vs. low regional fire periods. The new dataset has ~15% more fossil carbon on average than the previously published one, and possible reasons for this discrepancy are discussed. During the low regional fire period, 38% of organic carbon (OC) and 28% total carbon (TC) are from non-fossil sources, suggesting the importance of urban and regional non-fossil carbon sources other than the fires, such as food cooking and regional biogenic SOA. The ambient BBOA/ΔCH3CN ratio is much higher in the afternoon when the wildfires are most intense than during the rest of the day. Also, there are large differences in the contributions of the different OA components to the surface concentrations vs. the integrated column amounts. Both facts may explain some apparent disagreements between BB impacts estimated from afternoon aircraft flights vs. those from 24-h ground measurements. We show that by properly accounting for the non-BB sources of K, all of the BB PM estimates from MILAGRO can be reconciled. Overall, the fires from the region near the MCMA are estimated to contribute 15–23% of the OA and 7–9% of the fine PM at T0 during MILAGRO, and 2–3% of the fine PM as an annual average. The 2006 MCMA emissions inventory contains a substantially lower impact of the forest fire emissions, although a fraction of these emissions occur just outside of the MCMA inventory area.


2010 ◽  
Vol 10 (20) ◽  
pp. 9739-9760 ◽  
Author(s):  
M. J. Alvarado ◽  
J. A. Logan ◽  
J. Mao ◽  
E. Apel ◽  
D. Riemer ◽  
...  

Abstract. We determine enhancement ratios for NOx, PAN, and other NOy species from boreal biomass burning using aircraft data obtained during the ARCTAS-B campaign and examine the impact of these emissions on tropospheric ozone in the Arctic. We find an initial emission factor for NOx of 1.06 g NO per kg dry matter (DM) burned, much lower than previous observations of boreal plumes, and also one third the value recommended for extratropical fires. Our analysis provides the first observational confirmation of rapid PAN formation in a boreal smoke plume, with 40% of the initial NOx emissions being converted to PAN in the first few hours after emission. We find little clear evidence for ozone formation in the boreal smoke plumes during ARCTAS-B in either aircraft or satellite observations, or in model simulations. Only a third of the smoke plumes observed by the NASA DC8 showed a correlation between ozone and CO, and ozone was depleted in the plumes as often as it was enhanced. Special observations from the Tropospheric Emission Spectrometer (TES) also show little evidence for enhanced ozone in boreal smoke plumes between 15 June and 15 July 2008. Of the 22 plumes observed by TES, only 4 showed ozone increasing within the smoke plumes, and even in those cases it was unclear that the increase was caused by fire emissions. Using the GEOS-Chem atmospheric chemistry model, we show that boreal fires during ARCTAS-B had little impact on the median ozone profile measured over Canada, and had little impact on ozone within the smoke plumes observed by TES.


2013 ◽  
Vol 13 (4) ◽  
pp. 11071-11109 ◽  
Author(s):  
D. Griffin ◽  
K. A. Walker ◽  
J. E. Franklin ◽  
M. Parrington ◽  
C. Whaley ◽  
...  

Abstract. We present the results of total column measurements of CO, C2H6 and fine mode aerosol optical depth (AOD) during the "Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites" (BORTAS-B) campaign over Eastern Canada. Ground-based observations, using Fourier transform spectrometers (FTSs) and sun photometers, were carried out in July and August 2011. These measurements were taken in Halifax, Nova Scotia, which is an ideal location to monitor the outflow of boreal fires from North America, and also in Toronto, Ontario. Measurements of fine mode AOD enhancements were highly correlated with enhancements in coincident trace gas (CO and C2H6) observations between 19 and 21 July 2011, which is typical for a smoke plume event. In this paper, we focus on the identification of the origin and the transport of this smoke plume. We use back-trajectories calculated by the Canadian Meteorological Centre as well as FLEXPART forward-trajectories to demonstrate that the enhanced CO, C2H6 and fine mode AOD seen near Halifax and Toronto originated from forest fires in Northwestern Ontario that occurred between 17 and 19 July 2011. In addition, total column measurements of CO from the satellite-borne Infrared Atmospheric Sounding Interferometer (IASI) have been used to trace the smoke plume and to confirm the origin of the CO enhancement. Furthermore, the emission ratio (ERC2H6/CO) and the emission factor (EFC2H6) of C2H6 (with respect to the CO emission) were estimated from these ground-based observations. These C2H6 emission results from boreal fires in Northwestern Ontario agree well with C2H6 emission measurements from other boreal regions, and are relatively high compared to fires from other geographical regions. The ground-based CO and C2H6 observations were compared with outputs from the 3-D global chemical transport model GEOS-Chem, using the Fire Locating And Monitoring of Burning Emissions (FLAMBE) inventory. Agreement within the stated measurement uncertainty was found for the magnitude of the enhancement of the total columns of CO (~3%) and C2H6 (~8%) between the measured and modelled results. However, there is a small shift in time (of approximately 6 h) of arrival of the plume over Halifax between the results.


2012 ◽  
Vol 12 (12) ◽  
pp. 31629-31661 ◽  
Author(s):  
K. A. Tereszchuk ◽  
G. González Abad ◽  
C. Clerbaux ◽  
J. Hadji-Lazaro ◽  
D. Hurtmans ◽  
...  

Abstract. To further our understanding of the effects of biomass burning emissions on atmospheric composition, the Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) campaign was conducted on 12 July to 3 August 2011 during the Boreal forest fire season in Canada. The simultaneous aerial, ground and satellite measurement campaign sought to record instances of Boreal biomass burning to measure the tropospheric volume mixing ratios (VMRs) of short- and long-lived trace molecular species from biomass burning emissions. The goal was to investigate the connection between the composition and the distribution of these pyrogenic outflows and their resulting perturbation to atmospheric chemistry, with particular focus on oxidant species to determine the overall impact on the oxidizing capacity of the free troposphere. Measurements of pyrogenic trace species in Boreal biomass burning plumes were made by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) onboard the Canadian Space Agency (CSA) SCISAT-1 satellite during the BORTAS campaign. Even though most biomass burning smoke is typically confined to the boundary layer, emissions are often injected directly into the upper troposphere via fire-related convective processes, thus allowing space-borne instruments to measure these pyrogenic outflows. An extensive set of 15 molecules, CH3OH, CH4, C2H2, C2H6, C3H6O, CO, HCN, HCOOH, HNO3, H2CO, NO, NO2, OCS, O3 and PAN have been analyzed. Included in this analysis is the calculation of age-dependent sets of enhancement ratios for each of the species.


Sign in / Sign up

Export Citation Format

Share Document