scholarly journals Around the world in 17 days – hemispheric-scale transport of forest fire smoke from Russia in May 2003

2004 ◽  
Vol 4 (2) ◽  
pp. 1449-1471 ◽  
Author(s):  
R. Damoah ◽  
N. Spichtinger ◽  
C. Forster ◽  
P. James ◽  
I. Mattis ◽  
...  

Abstract. In May 2003, severe forest fires in southeast Russia resulted in smoke plumes extending widely across the Northern Hemisphere. This study combines satellite data from a variety of platforms (Moderate Resolution Imaging Spectroradiometer (MODIS), Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Earth Probe Total Ozone Mapping Spectrometer (TOMS) and Global Ozone Monitoring Experiment (GOME)) and vertical aerosol profiles derived with Raman lidar measurements with results from a Lagrangian particle dispersion model to understand the transport processes that led to the large haze plumes observed over North America and Europe. The satellite images provided a unique opportunity for validating model simulations of tropospheric transport on a truly hemispheric scale. Transport of the smoke occurred in two directions: Smoke travelling northwestwards towards Scandinavia was lifted over the Urals and arrived over the Norwegian Sea. Smoke travelling eastwards to the Okhotsk Sea was also lifted, it then crossed the Bering Sea to Alaska from where it proceeded to Canada and was later even observed over Scandinavia and Eastern Europe on its way back to Russia. This is perhaps the first time that air pollution was observed to circle the entire globe. The total transport time was about 17 days. We compared transport model simulations using meteorological analysis data from both the European Centre for Medium-Range Weather Forecast (ECMWF) and the National Center for Environmental Prediction (NCEP) in order to find out how well this event could be simulated using these two datasets. Although differences between the two simulations are found on small scales, both agree remarkably well with each other and with the observations on large scales. On the basis of the available observations, it cannot be decided which simulation was more realistic.

2004 ◽  
Vol 4 (5) ◽  
pp. 1311-1321 ◽  
Author(s):  
R. Damoah ◽  
N. Spichtinger ◽  
C. Forster ◽  
P. James ◽  
I. Mattis ◽  
...  

Abstract. In May 2003, severe forest fires in southeast Russia resulted in smoke plumes extending widely across the Northern Hemisphere. This study combines satellite data from a variety of platforms (Moderate Resolution Imaging Spectroradiometer (MODIS), Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Earth Probe Total Ozone Mapping Spectrometer (TOMS) and Global Ozone Monitoring Experiment (GOME)) and vertical aerosol profiles derived with Raman lidar measurements with results from a Lagrangian particle dispersion model to understand the transport processes that led to the large haze plumes observed over North America and Europe. The satellite images provided a unique opportunity for validating model simulations of tropospheric transport on a truly hemispheric scale. Transport of the smoke occurred in two directions: Smoke travelling northwestwards towards Scandinavia was lifted over the Urals and arrived over the Norwegian Sea. Smoke travelling eastwards to the Okhotsk Sea was also lifted, it then crossed the Bering Sea to Alaska from where it proceeded to Canada and was later even observed over Scandinavia and Eastern Europe on its way back to Russia. Not many events of this kind, if any, have been observed, documented and simulated with a transport model comprehensively. The total transport time was about 17 days. We compared transport model simulations using meteorological analysis data from both the European Centre for Medium-Range Weather Forecast (ECMWF) and the National Center for Environmental Prediction (NCEP) in order to find out how well this event could be simulated using these two datasets. Although differences between the two simulations are found on small scales, both agree remarkably well with each other and with the observations on large scales. On the basis of the available observations, it cannot be decided which simulation was more realistic.


2017 ◽  
Vol 17 (14) ◽  
pp. 8757-8770 ◽  
Author(s):  
Roghayeh Ghahremaninezhad ◽  
Ann-Lise Norman ◽  
Betty Croft ◽  
Randall V. Martin ◽  
Jeffrey R. Pierce ◽  
...  

Abstract. Vertical distributions of atmospheric dimethyl sulfide (DMS(g)) were sampled aboard the research aircraft Polar 6 near Lancaster Sound, Nunavut, Canada, in July 2014 and on pan-Arctic flights in April 2015 that started from Longyearbyen, Spitzbergen, and passed through Alert and Eureka, Nunavut, and Inuvik, Northwest Territories. Larger mean DMS(g) mixing ratios were present during April 2015 (campaign mean of 116  ±  8 pptv) compared to July 2014 (campaign mean of 20  ±  6 pptv). During July 2014, the largest mixing ratios were found near the surface over the ice edge and open water. DMS(g) mixing ratios decreased with altitude up to about 3 km. During April 2015, profiles of DMS(g) were more uniform with height and some profiles showed an increase with altitude. DMS reached as high as 100 pptv near 2500 m. Relative to the observation averages, GEOS-Chem (www.geos-chem.org) chemical transport model simulations were higher during July and lower during April. Based on the simulations, more than 90 % of the July DMS(g) below 2 km and more than 90 % of the April DMS(g) originated from Arctic seawater (north of 66° N). During April, 60 % of the DMS(g), between 500 and 3000 m originated from Arctic seawater. During July 2014, FLEXPART (FLEXible PARTicle dispersion model) simulations locate the sampled air mass over Baffin Bay and the Canadian Arctic Archipelago 4 days back from the observations. During April 2015, the locations of the air masses 4 days back from sampling were varied: Baffin Bay/Canadian Archipelago, the Arctic Ocean, Greenland and the Pacific Ocean. Our results highlight the role of open water below the flight as the source of DMS(g) during July 2014 and the influence of long-range transport (LRT) of DMS(g) from further afield in the Arctic above 2500 m during April 2015.


2006 ◽  
Vol 6 (1) ◽  
pp. 173-185 ◽  
Author(s):  
R. Damoah ◽  
N. Spichtinger ◽  
R. Servranckx ◽  
M. Fromm ◽  
E. W. Eloranta ◽  
...  

Abstract. Summer 2004 saw severe forest fires in Alaska and the Yukon Territory that were mostly triggered by lightning strikes. The area burned (>2.7×106 ha) in the year 2004 was the highest on record to date in Alaska. Pollutant emissions from the fires lead to violation of federal standards for air quality in Fairbanks. This paper studies deep convection events that occurred in the burning regions at the end of June 2004. The convection was likely enhanced by the strong forest fire activity (so-called pyro-convection) and penetrated into the lower stratosphere, up to about 3 km above the tropopause. Emissions from the fires did not only perturb the UT/LS locally, but also regionally. POAM data at the approximate location of Edmonton (53.5° N, 113.5° W) show that the UT/LS aerosol extinction was enhanced by a factor of 4 relative to unperturbed conditions. Simulations with the particle dispersion model FLEXPART with the deep convective transport scheme turned on showed transport of forest fire emissions into the stratosphere, in qualitatively good agreement with the enhancements seen in the POAM data. A corresponding simulation with the deep convection scheme turned off did not result in such deep vertical transport. Lidar measurements at Wisconsin on 30 June also show the presence of substantial aerosol loading in the UT/LS, up to about 13 km. In fact, the FLEXPART results suggest that this aerosol plume originated from the Yukon Territory on 25 June.


2017 ◽  
Author(s):  
Vanessa Brocchi ◽  
Gisèle Krysztofiak ◽  
Valéry Catoire ◽  
Jonathan Guth ◽  
Virginie Marécal ◽  
...  

Abstract. The Gradient in Longitude of Atmospheric constituents above the Mediterranean basin (GLAM) campaign was set up in August 2014, as part of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) project. This campaign aimed at studying the chemical variability of gaseous pollutants and aerosols in the troposphere along a West-East transect above the Mediterranean Basin (MB). In the present work, we focus on two biomass burning events detected at 5.4 and 9.7 km altitude above sea level (asl) above Sardinia (from 39°12 N–9°15 E to 35°35 N–12°35 E and at 39°30 N–8°25 E, respectively). Concentration variations in trace gas carbon monoxide (CO) and aerosols were measured thanks to the standard instruments on-board the Falcon-20 aircraft operated by the Service des Avions Français Instrumentés pour la Recherche en Environnement (SAFIRE) and the Spectromètre InfraRouge In situ Toute Altitude (SPIRIT) developed by LPC2E. 20-day backward trajectories with Lagrangian particle dispersion model FLEXPART (FLEXible PARTicle) help understanding the transport processes and the origin of the emissions that contributed to these pollutions detected above Sardinia. Biomass burning emissions came (i) on 10 August from the Northern American continent with air masses transported during 5 days before arriving over the MB, and (ii) on 6 August from Siberia with air masses travelling during 12 days and enriched in fire emission products above Canada 5 days before arriving over the MB. In combination with the Global Fire Assimilation System (GFAS) inventory and the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite fire locations, FLEXPART reproduces well the contribution of those fires to CO and aerosols enhancements under adjustments of the injection height to 10 km in both cases, and application of an amplification factor of 2.5 on CO GFAS emissions for the 10 August event. The chemistry transport model (CTM) MOCAGE is used as a complementary tool for the case of 6 August to confirm the origin of the emissions by tracing the CO global atmospheric composition reaching the MB. For this event, both models agree on the origin of air masses with CO concentrations simulated with MOCAGE lower than the observed ones, likely caused by the coarse model horizontal resolution that yields the dilution of the emissions and diffusion during transport. In combination with wind fields, the analysis of the transport of the air mass documented on 6 August suggests the subsidence of CO pollution from Siberia towards North America and then a transport to the MB via fast jet winds located at around 5.5 km in altitude.


2021 ◽  
Vol 14 (4) ◽  
pp. 2205-2220
Author(s):  
Matthias Faust ◽  
Ralf Wolke ◽  
Steffen Münch ◽  
Roger Funk ◽  
Kerstin Schepanski

Abstract. Trajectory models are intuitive tools for airflow studies. But in general, they are limited to non-turbulent, i.e. laminar flow, conditions. Therefore, trajectory models are not particularly suitable for investigating airflow within the turbulent atmospheric boundary layer. To overcome this, a common approach is handling the turbulent uncertainty as a random deviation from a mean path in order to create a statistic of possible solutions which envelops the mean path. This is well known as the Lagrangian particle dispersion model (LPDM). However, the decisive factor is the representation of turbulence in the model, for which widely used models such as FLEXPART and HYSPLIT use an approximation. A conceivable improvement could be the use of a turbulence parameterisation approach based on the turbulent kinetic energy (TKE) at high temporal resolution. Here, we elaborated this approach and developed the LPDM Itpas, which is coupled online to the German Weather Service's mesoscale weather forecast model COSMO. It benefits from the prognostically calculated TKE as well as from the high-frequency wind information. We demonstrate the model's applicability for a case study on agricultural particle emission in eastern Germany. The results obtained are discussed with regard to the model's ability to describe particle transport within a turbulent boundary layer. Ultimately, the simulations performed suggest that the newly introduced method based on prognostic TKE sufficiently represents the particle transport.


2007 ◽  
Vol 7 (6) ◽  
pp. 15911-15954 ◽  
Author(s):  
M. Tressol ◽  
C. Ordonez ◽  
R. Zbinden ◽  
V. Thouret ◽  
C. Mari ◽  
...  

Abstract. This study presents an analysis of both MOZAIC profiles above Frankfurt and Lagrangian dispersion model simulations for the 2003 European heat wave. The comparison of MOZAIC measurements in summer 2003 with the 11-year MOZAIC climatology reflects strong temperature anomalies (exceeding 4°C) throughout the lower troposphere. Higher positive anomalies of temperature and negative anomalies of both wind speed and relative humidity are found for the period defined here as the heat wave (2–14 August 2003), compared to the periods before (16–31 July 2003) and after (16–31 August 2003) the heat wave. In addition, Lagrangian model simulations in backward mode indicate the suppressed long-range transport in the mid- to lower troposphere and the enhanced southern origin of air masses for all tropospheric levels during the heat wave. Ozone and carbon monoxide also present strong anomalies (both ~ +40 ppbv) during the heat wave, with a maximum vertical extension reaching 6 km altitude around 11 August 2003. Pollution in the planetary boundary layer (PBL) is enhanced during the day, with ozone mixing ratios two times higher than climatological values. This is due to a combination of factors, such as high temperature and radiation, stagnation of air masses and weak dry deposition, which favour the accumulation of ozone precursors and the build-up of ozone. A negligible role of a stratospheric-origin ozone tracer has been found for the lower troposphere in this study. From 29 July to 15 August 2003 forest fires burned around 0.3×106 ha) in Portugal and added to atmospheric pollution in Europe. Layers with enhanced CO and NOy mixing ratios, probably advected from Portugal, were crossed by the MOZAIC aircraft in the free troposphere over Frankfurt. A series of forward and backward Lagrangian model simulations have been performed to investigate the origin of these anomalies. During the whole heat wave, European anthropogenic emissions present the strongest contribution to the measured CO levels in the lower troposphere (near 30%). This source is followed by Portuguese forest fires which affect the lower troposphere after 6 August 2003 and even the PBL around 10 August 2003. The averaged biomass burning contribution reaches 35% during the affected period. Anthropogenic CO of North American origin only marginally influences CO levels over Europe during that period.


2020 ◽  
Vol 237 ◽  
pp. 02014
Author(s):  
Antonin Zabukovec ◽  
Gérard Ancellet ◽  
Jacques Pelon ◽  
J.D. Paris ◽  
Iogannes E. Penner ◽  
...  

Airborne lidar measurements were carried out over Siberia in July 2013 and June 2017. Aerosol optical properties are derived using the Lagrangian FLEXible PARTicle dispersion model (FLEXPART) simulations and Moderate Resolution Imaging Spectrometer (MODIS) AOD. Comparison with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol products is used to validate the CALIOP aerosol type identification above Siberia. Two case studies are discussed : a mixture of dust and pollution from Northern Kazakhstan and smoke plumes from forest fires. Comparisons with the CALIOP backscatter ratio show that CALIOP algorithm may overestimate the LR for a dusty mixture if not constrained by an independent AOD measurement.


2011 ◽  
Vol 11 (18) ◽  
pp. 9887-9898 ◽  
Author(s):  
M. Rigby ◽  
A. J. Manning ◽  
R. G. Prinn

Abstract. We present a method for estimating emissions of long-lived trace gases from a sparse global network of high-frequency observatories, using both a global Eulerian chemical transport model and Lagrangian particle dispersion model. Emissions are derived in a single step after determining sensitivities of the observations to initial conditions, the high-resolution emissions field close to observation points, and larger regions further from the measurements. This method has the several advantages over inversions using one type of model alone, in that: high-resolution simulations can be carried out in limited domains close to the measurement sites, with lower resolution being used further from them; the influence of errors due to aggregation of emissions close to the measurement sites can be minimized; assumptions about boundary conditions to the Lagrangian model do not need to be made, since the entire emissions field is estimated; any combination of appropriate models can be used, with no code modification. Because the sensitivity to the entire emissions field is derived, the estimation can be carried out using traditional statistical methods without the need for multiple steps in the inversion. We demonstrate the utility of this approach by determining global SF6 emissions using measurements from the Advanced Global Atmospheric Gases Experiment (AGAGE) between 2007 and 2009. The global total and large-scale patterns of the derived emissions agree well with previous studies, whilst allowing emissions to be determined at higher resolution than has previously been possible, and improving the agreement between the modeled and observed mole fractions at some sites.


2010 ◽  
Vol 10 (5) ◽  
pp. 13287-13335 ◽  
Author(s):  
S. Gassó ◽  
A. Stein ◽  
F. Marino ◽  
E. Castellano ◽  
R. Udisti ◽  
...  

Abstract. The understanding of present atmospheric transport processes from Southern Hemisphere (SH) landmasses to Antarctica can improve the interpretation of stratigraphic data in Antarctic ice cores. In addition, long range transport can deliver key nutrients normally not available to marine ecosystems in the Southern Ocean and may trigger or enhance primary productivity. However, there is a dearth of observational based studies of dust transport in the SH. This work aims to improve current understanding of dust transport in the SH by showing a characterization of two dust events originating in the Patagonia desert (south end of South America). The approach is based on a combined and complementary use of satellite retrievals (detectors MISR, MODIS, GLAS, POLDER, OMI), transport model simulation (HYSPLIT) and surface observations near the sources and aerosol measurements in Antarctica (Neumayer and Concordia sites). Satellite imagery and visibility observations confirm dust emission in a stretch of dry lakes along the coast of the Tierra del Fuego (TdF) island (~54° S) and from the shores of the Colihue Huapi lake in Central Patagonia (~46° S) in February 2005. Model simulations initialized by these observations reproduce the timing of an observed increase in dust concentration at the Concordia Station and some of the observed increases in atmospheric aerosol absorption (here used as a dust proxy) in the Neumayer station. The TdF sources were the largest contributors of dust at both sites. The transit times from TdF to the Neumayer and Concordia sites are 6–7 and 9–10 days respectively. Lidar observations and model outputs coincide in placing most of the dust cloud in the boundary layer and suggest significant deposition over the ocean immediately downwind. Boundary layer dust was detected as far as 1800 km from the source and $\\sim $800 km north of the South Georgia Island over the central sub-Antarctic Atlantic Ocean. Although the analysis suggests the presence of dust at ~1500 km SW of South Africa five days after, the limited capabilities of existing satellite platforms to differentiate between aerosol types do not permit a definitive conclusion. In addition, the model simulations show dust lifting to the free troposphere as it travels south but it could not be confirmed by the satellite observations due to cloudiness. This work demonstrates that complementary information from existing transport models, satellite and surface data can yield a consistent picture of the dust transport from the Patagonia desert to Antarctica. It also illustrates the limitation of using any of these approaches individually to characterize the transport of dust in a heavily cloudy area.


Sign in / Sign up

Export Citation Format

Share Document